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Abstract
Gridded terrestrial water storage (TWS) variations observed by GRACE or GRACE-
FO typically show a spatial correlation structure that is both anisotropic (direction-
dependent) and non-homogeneous (latitude-dependent). We introduce a new corre-
lation model to represent this structure. This correlation model allows GRACE and
GRACE-FO data users to get realistic correlations of the TWS grids without the need
to derive them from the formal spherical harmonic uncertainties. Further, we found that
themodelled correlations fit the spatial structure of uncertainties to a greater extent in a
simulation environment. The model is based on a direction-dependent Bessel function
of the first kind which allows to model the longer correlation lengths in the longitudi-
nal direction via a shape parameter, and also to account for residual GRACE striping
errors that might remain after spatial filtering. The global scale and shape parameters
vary with latitude by means of even Legendre polynomials. The correlation between
two points transformed to covariance by scaling with the standard deviations of each
point. The covariance model is valid on the sphere which is empirically verified with
a Monte-Carlo approach. The covariance model is subsequently applied to 5years of
simulated GRACE-FO data which allow for immediate validation with true uncer-
tainties from the differences between the input mass signal and the recovered gravity
fields. Four different realisations of the point standard deviations were tested: two
based on the formal errors provided with the simulated Stokes coefficients, and two
based on empirical standard deviations, where the first is spatially variant and tempo-
rally invariant, and the second spatially invariant and temporally variant. These four
different covariance models are applied to compute TWS time series uncertainties for
both the fifty largest discharge basins and regular grid cells over the continents. These
four models are compared with the true uncertainties available in the simulations. The
two empirically-based covariance models provide more realistic TWS uncertainties
than the ones based on the formal errors. Especially, the empirically-based covariance
models are better in reflecting the spatial pattern of the uncertainties of the simulated
GRACE-FO data including their latitude dependence. However, thesemodelled uncer-
tainties are in general too large. But with only one global scaling factor, a statistical
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test confirms the equivalence between the empirically-based covariance model with
temporally variable point standard deviations and the true uncertainties. Thus at the
end, this covariance model represents the closest fit in the simulation environment.
The simulated GRACE-FO data are assumed to be very realistic which is why we rec-
ommend the new covariance model to be further investigated for the characterisation
of real GRACE and GRACE-FO terrestrial water storage data.

Keywords GRACE terrestrial water storage uncertainty · Spatial covariance
modelling · Anisotropic and non-homogeneous covariance function · Simulated
GRACE and GRACE-FO data

Mathematics Subject Classification 62P12

1 Introduction

The Gravity Recovery and Climate Experiment (GRACE, 2002–2017) and its succes-
sor the GRACE Follow-On (GRACE-FO, sinceMay 2018) missions observe temporal
variations of the Earth’s gravity field. These variations are primarily caused by the
redistribution of mass by the various branches of the global water cycle. Satellite
gravimetry is the only remote sensing system that directly senses changes in water
masses independently of its surface expose, such that, in combination with other in-
situ or model data, even groundwater changes can be detected (Rodell et al. 2009).
GRACE has also been used to monitor ice-sheet and glacier mass loss (Schrama et al.
2014), to quantify drought conditions (Jäggi et al. 2019; Boergens et al. 2020), flood
risk (Reager et al. 2014), or to assess the reliability of in situ snow fall observations
(Behrangi et al. 2018). Over the oceans, GRACE directly observes barystatic sea-
level changes (Chambers 2006), temporal variations in the transport of major current
systems like the Antarctic Circumpolar Current (Bergmann and Dobslaw 2012), or
wind-driven changes in the Arctic circulation (Peralta-Ferriz et al. 2014). The most
important accomplishments of GRACE have recently been summarised by Tapley et
al. (2019).

GRACE data further allow to improve numerical models of individual aspects of
geophysical fluid dynamics, such as global hydrology (e.g. Güntner 2008; Eicker et al.
2014;Kumar et al. 2016), ocean circulation (e.g.Köhl et al. 2012), or ocean tidemodels
(e.g. Mayer-Gürr et al. 2012) by means of validation and subsequent parameter cali-
bration. Increasingly GRACE data are assimilated into numerical models by directly
updating state variables (Zaitchik et al. 2008; Schumacher et al. 2018). It is important
to note that data assimilation techniques critically rely on realistic uncertainty esti-
mates for bothmodel and observations to arrive at an optimal combination between the
two sources of information. These uncertainty estimates need to reflect any significant
correlations in both time and space.

Inverting a global gravity field by means of a Gauss–Markov model from satellite
sensor data of just 30 days does not only provide estimates for the parameters of a
spherical harmonics expansion, but also the associated covariances. These so-called
“formal uncertainties” are known to be too small. Kvas et al. (2019) emphasise that
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in particular uncertainties of the time-variable geophysical background models for
tidal and non-tidal mass variability in both atmosphere and ocean need to be consid-
ered explicitly to avoid too optimistic uncertainty estimates. With prior information
for both spatial and temporal correlations of these background model uncertainties
(Dobslaw et al. 2016) and the method of variance component estimation (Koch and
Kusche 2002), fairly realistic uncertainty covariances can be achieved (Kvas et al.
2019). Variances derived by this method are currently only available for the gravity
field series processed by the team at the Technical University in Graz as presented by
Kvas et al. (2019).

These depicted flaws of the formal uncertainties were already suspected shortly
after the launch ofGRACE, leading to alternativemethods being developed to quantify
uncertainties. Wahr et al. (2006) subtracted trend, annual, and semi-annual harmonics
from the monthly sampled series of mass anomalies and used the variance of the resid-
uals as an upper bound of the variance for a certain averaging region. The method
considers all real deviations from the climatology as noise and is therefore somewhat
pessimistic. This so-called empirical approach allows to calculate variances, but does
not provide any means to characterise spatial dependencies which thus need to be esti-
mated from other sources. For this purpose, Swenson et al. (2003) proposed to model
spatial covariances for GRACE data with different azimuthally symmetric covariance
functions. Subsequently, Landerer and Swenson (2012) applied a stationary isotropic
squared exponential covariance model which has been also used later by Zhang et al.
(2016).

It is important to recall that the covariance functions introduced above can be evalu-
ated efficiently in the spatial domain so that variances for any arbitrarily shaped region
can be derived from the combination with (spatially and/or temporally variable) vari-
ance information. The spatial covariance model by Landerer and Swenson (2012) is
therefore employed by JPL’s TELLUS website which is a popular access point to
GRACE and GRACE-FO data for non-geodetic users interested to utilise satellite
gravimetry data for their specific area-of-interest. With this paper, we present a new
covariance model that also properly reflects the changes in mission performance of
GRACE andGRACE-FO throughout the years in order to derive realistic variances for
user-defined averaging regions from gridded mass anomaly data and their associated
variances. The covariance model consists of a time independent (stationary) correla-
tion model and time dependent (non-stationarity) empirical point standard deviations.
Thus, the time dependence of the latter relies on the data, i. e., in the here presented
study on the simulated data.

We develop and test the new covariance model with the help of synthetic GRACE-
FO TWS data from a full-scale simulation over a nominal mission lifetime of 5 years
(Flechtner et al. 2016). The simulations start from a synthetic time-variable grav-
ity field (Dobslaw et al. 2015) to generate high-resolution orbits for both spacecraft.
Simulated observations of all relevant sensors are combined with realistic assump-
tions about the individual error characteristics and are subsequently used to calculate
series of monthly-mean gravity fields. We consider gravity field retrievals using the
microwave K-band range-rate data only. The processing choices of the simulation
conform with the GFZ RL05 standards (Dahle et al. 2013). Within the simulation
environment, the performance of the covariance model can be validated by contrast-
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ing estimated uncertainties against true uncertainties available from the differences
of the retrieval with respect to the synthetic input gravity field. Thus, while our new
covariance model is only evaluated for the simulated data, we assume that the results
can later be transferred to real GRACE and GRACE-FOmonthly global gravity fields.

This article is structured as follows: We will initially review various sources of
uncertainty that contribute to deficits in time-series of monthly-mean gravity fields
available from GRACE and GRACE-FO and will explain why spatial correlations
should be treated as non-homogeneous, anisotropic, and non-stationary (Sect. 2). Sub-
sequently, we design the functional model for a new spatial covariance model and
discuss its mathematical properties (Sect. 3). Numerical parameters for this covari-
ance model will be estimated from 5 years of simulated GRACE-FO data (Sect. 4)
that allow for a direct validation of our approach to the true error available from that
simulation. The paper closes with a discussion of the results and some conclusions
for the application of the covariance model to real data and the implementation into
GFZ’s GravIS portal (Sect. 5).

2 Contributions to the GRACE and GRACE-FO error budget

In a strict statistical sense, errors are ameasure of accuracy, whereas uncertainties are a
measure of precision. True errors are typically not readily accessible in the real world,
and are therefore often approximated by (variance propagated) uncertainties which is
the actual subject of our modelling efforts in this article. Still, the term error is often
loosely used to describe also uncertainty. A number of sources contribute to the overall
errors and uncertainties of GRACE and GRACE-FO observed monthly gravity fields.
The highly precise satellite-to-satellite tracking (SST) data are only sampled along the
near polar orbit, i. e., in longitudinal direction . Thus, the correlation length is shorter
in cross-track than in along-track direction. We will refer to this direction-dependency
of the spatial correlations as anisotropy in this paper.

Both missions are operating in non-repeat orbits with slowly decaying altitudes.
For individual months, however, the orbit may degenerate into an approximate repeat
configuration, e.g., a 2-day repeat in February 2015. For these months the spatial
resolution of the resulting gravity field is much lower than for an average month. Dur-
ing the course of the mission, some sensors aboard GRACE and GRACE-FO exhibit
time-variable uncertainties that eventually exceed the measurement uncertainty of
the microwave ranging system. Towards the end of the GRACE mission, battery cell
failed which led to a limited power availability so that thermal control was reduced
step-by-step after 2010 affecting the precision of various instruments. More severely,
accelerometer data from GRACE-B became unavailable after November 2016 (in
order to reduce the load on the GRACE-B battery). For this reason non-gravitational
accelerations measured aboard the other spacecraft have been transplanted to the posi-
tion of GRACE-B (Bandikova et al. 2019). Note that a similar approach is also being
applied to GRACE-FO data due to the under-performance of the accelerometer aboard
GRACE-D. We refer to this time-dependency of the uncertainties as non-stationarity
in this paper.
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It is further important to recognise that the GRACE and GRACE-FO missions are
subject to spatially and temporally variable environmental influences. The solar cycle
of typically 12 years duration leads to variations in radiation pressure acting on the
spacecraft, with consequences for the ratio between gravitational and non-gravitational
forces as recorded by the accelerometers. Particularly quiet solar conditions led to
exceptionally good gravity models during the years 2004–2008. Also geophysical
background models utilised during gravity field inversion to remove high-frequency
mass variations caused by tides or non-tidal processes in atmosphere and oceans are
commonly treated as error-free a priori models which is obviously not the case (Dob-
slaw et al. 2016). It is fair to assume that in particular uncertainties in the background
models are dependent on the geographic location, since tide models are typically less
accurate at the coasts and in polar seas. We therefore expect that the uncertainties have
a spatial variation which we denote as non-homogeneity in this article. Please note
that in statistical literature, homogeneity is often used to describe the translational
invariance of the statistical properties of a stochastic process. In geodesy, the term
is widely used instead to describe stationarity in space (Rummel and Schwarz 1977;
Meier and Keller 1990), so that we use it here in this way in order to distinguish more
clearly between the spatial and the temporal domain.

All these different contributions lead to random and systematic uncertainties
that have pronounced spatial correlations. It should be clear from the points above
that the uncertainties and their spatial correlations cannot be expected to be Gaus-
sian, but will have very specific structures. Most prominently, monthly GRACE and
GRACE-FO fields synthesised from unconstrained spherical harmonics have a strong
latitude-dependent North-South striping error pattern which needs to be removed with
anisotropic filtering methods (Swenson and Wahr 2006; Kusche et al. 2009, e.g.).
However, even after post-processing the GRACE and GRACE-FO data with such
filters the correlation structure in the spatial domain remain both anisotropic and
non-homogeneous, particular in the latitudinal direction. Additionally, the temporal
variations of the uncertainty contributions listed above indicate a non-stationarity of
the spatial covariances. Even the minor changes in instrumentation between GRACE
and GRACE-FO will inevitably lead to non-stationarities in the data.

3 Design of a spatial covariancemodel

We design a covariance model for TWS gridded GRACE data that account for
anisotropy, spatial non-homogeneity, and potentially temporal non-stationarity. We
request the covariance model to be a valid covariance function on the sphere which
does not hold for many well-known covariance models in the two dimensional vec-
tor space R

2 (Huang et al. 2011). More information on the validity of the covariance
model will be given in Sect. 3.1.We therefore combine different approaches to address
all these objectives.

Jun and Stein (2007, 2008) have designed a class of covariance models for
latitudinal non-homogeneous covariance functions on spheres by scaling homo-
geneous covariance models with latitude-dependent Legendre polynomials. With
Legendre functions this concept can be extended to accommodate also longitudi-
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nal non-homogeneity. Different ideas for anisotropic covariance functions in R
2

have been developed for homogeneous data in Ecker and Gelfand (2003), or for
non-homogeneous data in Darbeheshti and Featherstone (2009). The approach of
Mateu et al. (2008) has also included space-time relations but again only for homo-
geneous data. The anisotropy of our covariance model will be realised with a
orientation-dependent shape parameter allowing for shorter correlation lengths in the
latitudinal direction. The residual stripings in the correlation structure can bemodelled
with a wave- or hole-effect correlation function (Ma and Jones 2001). To this end, we
utilise a correlation function based on a Bessel function of the first kind following
Yaglom (1987).

It is important to recall that we focus in this study only on modelling of covariances
between two arbitrary locations on the sphere, not covariances in time. The covariance
between two values of a certain functional of the gravity field i, j at their respective
locations (λi , θi ) and (λ j , θ j ), consists of the correlation structure C1 which is time-
independent, and the two time-dependent point uncertainties σ :

C(λi , θi , λ j , θ j , t) = σi (t)σ j (t)C1(λi , θi , λ j , θ j ). (1)

For the correlation model C1 we assume homogeneity with respect to longitude.
For brevity, from now on we will write f (·) = f (λ1, θ1, λ2, θ2).

Following Jun and Stein (2008), we construct the correlation model as the latitude-
dependent rescaled version of a basis correlation function C0:

C1(·) = P(θ1)P(θ2)C0(·), (2)

with

P(θ) =
4∑

i=0

k2i P2i (θ) (3)

and Pn(θ) the Legendre polynomials of degree n. Here, we only use the even numbered
Legendre polynomials (up to degree 8) in order to ensure symmetry of the correla-
tion model at the equator. We found this degree to be sufficient for the modelling
considering the stability of the subsequent numerical parameter estimation.

In the next step, we characterise C0. Even though the GRACE and GRACE-FO
data are already filtered to remove the longitudinal stripes, residuals of these can still
be detected in the correlation structure as ripples in East-West direction. To model this
wave-like effect, we use the Bessel function of the first kind Jν of order ν:

C0(·) = c0
a(·)d(·) Jν(a(·)d(·), (4)

where c0 is a global scaling factor of the function, and d(·) is the spherical distance
between the locations. This function was developed by Yaglom (1987) for R

2, but
we will later show the validity of the covariance function on the sphere. The width
parameter a(·) is substituted with a function that allows for the anisotropy of the
correlation model:

a(·) = a0(·) sin(φ(·)) + a1(·). (5)
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Here, φ(·) is the azimuth angle of point i to point j counted clockwise from north,
and a0, a1 latitude-dependent with

a0(·) = Pa(mean{θ1, θ2})A0 with Pa(θ) =
4∑

i=0

ka02i P2i (θ) (6)

and

a1(·) = Pa(mean{θ1, θ2})A1 with Pa(θ) =
4∑

i=0

ka12i P2i (θ). (7)

A0 and A1 represent the width parameter of the function before applying latitudinal
scaling describing the anisotropic (A0) and isotropic (A1) part of the function, respec-
tively. Note that this definition of the anisotropy degenerates to an isotropic function
at the poles.

The parameters k0 and c0 are linearly dependent and thus not separable. The same
applies for A0 and ka00 and A1 and ka10 , so that we can set k0 = ka00 = ka10 = 1.
Further, we fix ν = 2. All together, the correlation model is defined by 15 parameters

{
A0, k

a0
2 , ka04 , ka06 , ka08 , A1, k

a1
2 , ka14 , ka16 , ka18 , c0, k2, k4, k6, k8

}
.

Note that we assume that the spatial correlation does not change over time. The
previously discussed non-stationarity of the overall GRACE observing system is intro-
duced only by the point uncertainties σ in Eq. 1.

3.1 Validity of the covariance function on the sphere

A covariance function is valid if the function is positive (semi-)definite. In our case,
it has to be valid on an arbitrary spherical surface S

3 which does not hold for many
covariance functions defined in R

2 (Guinness and Fuentes 2016). According to Gneit-
ing (2013) a function C : S

3 × S
3 → R is positive semi-definite if the matrix

A = (
ai, j

)n
i, j=1 , ai, j = C(xi, xj) (8)

is positive semi-definite for any n, locations x1, . . . , xn ∈ S
3.

Due to the complicated analytically expression of the covariance function, it is not
possible for us to prove the positive definiteness. However, we may use the definition
in Eq. 8 for an empirical test: To check any square matrix on its definiteness it needs
to be decomposed with an eigenvalue decomposition. If all eigenvalues are larger or
equal to zero the matrix is positive semi-definite. The validity of a covariance function
on the sphere does not depend on the chosen coordinate system and, thus, the presented
covariance could be transformed to any other coordinate system without loss of its
properties.

To test all realisations of covariance models used in this study for their positive-
definiteness, we set up Monte-Carlo simulations. For this, we build 10.000 times the
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matrix A with 100 randomly distributed global locations xi and test in each case
the positive definiteness of the matrix. If all realisations of the matrix are positive
definite,we conclude that the covariance function is positive definite and the covariance
function is valid on the sphere.

4 Synthetic GRACE-FO data

The numerical parameters of the covariance model introduced above could be directly
estimated from GRACE and GRACE-FO monthly gravity information. In this paper,
however, we revert to synthetic gravity fields from a full-scale satellite simulation
where true errors are readily available from a comparison with the time-variable input
gravity field, so that the new method presented here can be thoroughly validated. The
simulated data set consists of a time series of 60 monthly solutions (covering 5 years)
provided in terms of spherical harmonics up to degree and order 100 Flechtner et al.
(2016). We will follow two distinct paths that lead to four different realisations of
covariances as shown in Fig. 1. The first path uses the formal variances of the Stokes
coefficients, while the second employs so-called empirical covariances obtained from
the gridded TWS signals.

4.1 Formal variances

The Stokes coefficients of the simulated data are provided together with calibrated
formal standard deviations. These standard deviations are nowpropagated to the spatial
domain to derive gridded variances and covariances.

4.1.1 Formal variance propagation

Standard deviations of the Level-2 Stokes coefficients are variance propagated through
the same post-processing process as the signal coefficients themselves, namely through
the anisotropic spatial filtering and the spherical harmonic synthesis (step F1 in Fig. 1).
The relationship between unfiltered Stokes coefficients anm (anm = cnm if m ≥ 0,
anm = sn−m if m < 0), with their covariance matrix �{anm} = diag(σ 2

anm ), and
filtered aα

nm instances is
aα
nm = Wαanm (9)

with the filter matrixWα , thus the filtered variances and covariances are, according to
variance propagation law,

�{aα
nm} = Wα�{anm}(Wα)T . (10)

We ignore the off-diagonals of the covariance matrix of the filtered coefficients
�{aα

nm}, since tests revealed that the variances are several orders of magnitude larger
than the covariances, so that this simplification does not affect the subsequent results.
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For the propagation of the filtered coefficient variances to the grid with k grid points
and up to degree and order nmax , again a variance propagation is applied:

�{tws} = A�{aα
nm}AT , (11)

with

A = 1

ρw

M

4πR2

(
A j (λi , θi )

)k,(nmax ,nmax )

i=1, j=(0,0)

Anm(λi , θi ) =
{

2n+1
1+k′

n
cnm Pnm(sin θi ) cosmλi m ≥ 0

2n+1
1+k′

n
sn−m Pn−m(sin θi ) sinmλi m < 0

.

(12)

These formal spatial covariances can directly be used to determine the covariance
between two points. The resulting first candidate realisation will be called formal
covariance, C f , in the following.

4.1.2 Estimated correlation model from formal variances

As an alternative to the direct approach facilitating the formal covariances, we utilise
just the formal correlations to estimate a correlation model.

The parameter estimations of the correlation model (cf. Sect. 3) lead to several
non-significant parameters as the formal correlations do neither reflect anisotropy nor
non-homogeneity. Thus, the correlation model can be simplified to

C1(·) = c0
a · d(·) Jν(a · d(·)). (13)

Model parameters are fitted as c0 = 4.01× 10−3 and a = 7.98 from the 5years of
simulated GRACE-FO data. The resulting covariance function is successfully tested
for positive definiteness on the sphere following the method described in Sect. 3.1.
Thus, the combination of the formal correlation model and formal uncertainty is a
valid covariance model on the sphere. This second realisation will be called modelled
formal covariance (C f ,m) in the following.

The spatial structure of this estimated correlation model reveals that for the formal
uncertainties the wave effect is negligible. Only at distances above 2000km the effect
becomes visible (Fig. 2, first column).

4.2 Empirical variances

As an alternative to the formal variances, the gridded TWS signal itself is used to
calculate empirical correlations from which the parameters of the spatial correlation
model are estimated. This is depicted as the second path in Fig. 1. In order to employ
the covariance model, point variances are necessary according to Eq. 1. Here, we test
two empirical realisations of the variances that vary either spatially or temporally.
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Fig. 2 Spatial correlation models derived for different latitudes (0◦ 30◦, 60◦) from formal uncertainties
(left column) and empirical signal correlations (right column) as available from 60 months of simulated
GRACE-FO gravity fields. Note that the formal uncertainties do not reflect any latitudinal dependency
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4.2.1 Empirical variance and correlation estimation

In line with Wahr et al. (2006), empirical correlations are estimated from the gridded
simulated TWS data Zsim(λ, θ, t) ∈ Zsim from which the deterministic trend, annual,
and semi-annual signals are removed. We assume the empirical correlations Ĉ to
vary only with latitude θ and that the empirical correlations are anisotropic. Thus, we
estimate them for each latitude depending on distance dist and direction dir . Further,
we assume symmetry at the equator such that Ĉθ = Ĉ−θ and an axial symmetry along
longitudinal direction. We estimate average empirical correlations from all 60 months
available.

To this end we define for a fixed latitude θ and fixed (dist, dir)

Nθ (dist, dir) :=
{
(λ1, θ1, λ2, θ2) ∈ ([0◦, 360◦] × [−90◦, 90◦])2 :

Zsim(λ1, θ1) ∈ Zsim, Zsim(λ2, θ2) ∈ Zsim,

abs(θ1) = θ, abs(θ2 − θ1) ≤ 20◦, abs(λ2 − λ1) ≤ 15◦,

d(λ1, θ1, λ2, θ2) = dist, φ(λ1, θ1, λ2, θ2) = dir
}
,

where d(λ1, θ1, λ2, θ2) is the spherical distance and φ(λ1, θ1, λ2, θ2) the spherical
azimuth between the points.

The empirical covariances for each latitude are then

Ĉθ (dist, dir) = 1

Ĉovθ (0, 0)

1

|Nθ (dist, dir)|
∑

(λ1,θ1,λ2,θ2)∈Nθ (dist,dir)

Zsim(λ1, θ1)Zsim(λ2, θ2),

(14)
where |Nθ (dist, dir)| is the cardinality of Nθ (dist, dir) and Ĉovθ (0, 0) the empirical
variance at latitude θ . We do not estimate Ĉθ (dist, dir) for θ ≥ 70◦ as the area of
land in the Arctic is too small for a reliable estimation.

4.2.2 Estimated correlation model from empirical correlations

The parameters of the correlation function are now fitted to the empirical correlations.
This step is depicted in the flowchart of Fig. 1 as E22. For the estimation we apply the
numerical Sequential Least SQuares Programming (SLSQP) solver which allows to
introduce parameter bounds and constraints in the optimisation. The two parameters
c0 and A1 are bound-limited to zero, meaning that they have to be positive in any case.
Additionally, a constraint is introduced by the function a(·) = a0(·) + a1(·) ≥ 0. We
found that the latitude dependence of a1(·) is not significant for the simulated data,
leading to ka12 = ka14 = ka16 = ka18 = 0 and a1(·) = A1. All estimated parameters are
given in Table 1.

The correlation function is tested for its validity on the sphere and is found to be
positive definite. We note that the spatial structure of the correlation model changes
significantly with latitude, both for the maximum amplitude and the shape. At the
equator and at 60◦ latitude the function is rather isotropic, while at 30◦ latitude the
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Table 1 Numerical values for the parameters of the covariance model obtained from fitting against 60
months of synthetic GRACE-FO data

A0 ka02 ka04 ka06 ka08 A1 c0 k2 k4 k6 k8

5.5 · 10−3 −0.27 −0.94 0.23 −8.5 · 10−2 3.0 · 10−3 16.12 −0.26 6.6 · 10−2 −0.17 5.7 · 10−2

half value distance is 2000km in longitude compared to 500km in latitudinal direction.
The wave effect of the model is also most pronounced at 30◦ latitude (Fig. 2, second
column).

To model the covariance between two points, each point’s uncertainty is required
according to Eq. 1. Note that both uncertainties originate from the residual gridded
TWS data with all deterministic signals removed. A first option considered here,
σs(λ, θ), is the standard deviation of the residual data at each grid point over the time
series:

σs(λ, θ) =
√√√√ 1

n − 1

n∑

i

(
Zred
sim(λ, θ, ti ) − Zred

sim(λ, θ)
)2

. (15)

Thus, this uncertainty varies in space but not in time. The resulting third realisation is
called empirical-spatial covariance (Ce,s). For the other option, σt (t), is the standard
deviation for all grid points at a given time step:

σt (t) =
√√√√ 1

n − 1

n∑

i

(
Zred
sim(λi , θi , t) − Zred

sim(t)
)2

. (16)

In this fourth realisation of the new model, the uncertainty is time-variable but
spatially constant, and therefore will be called empirical-temporal covariance (Ce,t ).

4.3 Uncertainty for river basins

The four different candidate realisations of the new covariance model (C f , C f ,m ,
Ce,s , Ce,t ) will now be used to calculate uncertainties of TWS change in arbitrarily
shaped region such as river basins (Landerer and Swenson 2012). The variance of the
region-wide TWS change is calculated as

var(t) =
m∑

i=1

m∑

j=1

wiw jC(λi , θi , λ j , θ j , t). (17)

Here, m is the number of grid points in the region with its individual area weights wi .
Thus, the standard deviation of the regions is σ(t) = √

var(t).
The four different covariances, C f , C f ,m , Ce,s , and Ce,t lead to four realisations of

the regions’ standard deviations σ f , σ f ,m , σe,s , and σe,t . Regional standard deviations
are compared to true errors σtrue which are computed as the difference of regional
means between the synthetic input gravity field and the finally retrieved monthly
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gravity fields of the full-scale satellite simulation. Please note that the deterministic
signals have not been removed in this case so that estimated errors correspond to the
full signal content of a monthly GRACE-FO gravity field solution.

To evaluate the temporal evolution of these standard deviations, we first present
time-series for the Congo, Ob, and Murray–Darling river basins (Fig. 3). These exam-
ples represent catchments at different latitudes with different hydrometeorological
conditions and thus signal magnitudes. In all three basins the two standard deviations
based on formal covariances σ f and σ f ,m feature two prominent peaks in 2003 and
2005 which are not seen in σtrue and which are not linked to extreme values in the
TWS time series. In these months, the simulated orbits were in a short repeat configu-
ration, leading to larger uncertainties in the Stokes coefficients and thus larger formal
variances.

Moreover,σ f ,m seems to be an up-scaled version ofσ f in all three basins, albeitwith
an individual scale for each basin. For discharge basins with smaller TWS variations
such as theMurray-Darling, the standard deviations are at the same order ofmagnitude
as the signal itself.

To check whether temporal variations of σtrue are caused by random noise in the
empirical realisation or rather represent a significant deviation, we employ a Bartlett’s
test for equal variances (Snedecor and Cochran 1989). For all 50 basins considered
here, the test rejects the assumption of equal variances with a confidence interval of
99%. We therefore conclude that σtrue indeed changes over time. However, none of
the four covariance models is properly reflecting these temporal variations.

In order to evaluate the temporal similarity of the four candidate covariancemodels,
we utilise the Pearson’s correlation coefficient. The correlation coefficient provides a
measure of similarity which is scale invariant. Globally, σe,t represents the temporal
behaviour of σtrue very well compared to the other three standard deviations. At basin
scale, however, the correlation coefficient never exceeds 0.6 and is even negative for
some basins.

The temporal progression of the standard deviations for all 50 basins does not exhibit
any trend or other systematic effects. We therefore compute the average standard
deviation for each basin to investigate the spatial patterns more thoroughly.

The mean true standard deviations of the basins show a general decline towards
the poles from 1.2cm in the tropics to 0.9cm in Northern Canada and Siberia (Fig. 4).
However, the two formal variance-based covariance models let basin standard devi-
ations increase towards the poles (∼0.5–1cm for σ f , ∼1.5–2.5cm for σ f ,m). The
spatial empirical standard deviations σe,s instead display the poleward decline, but
severely overestimate the magnitude especially in the tropics with up to 5cm. In
Siberia and Northern Canada σe,s has a magnitude around 2cm. The other empirically
derived standard deviation, σe,t , instead exhibits only a slight decline towards the poles
(∼2.3–1.7cm).

In addition to the visual comparison of the spatial patterns, we again employ the
correlation coefficient to quantify the similarity between the true and the modelled
uncertainties. With a correlation coefficient of 0.83, σe,t shows the largest similarity to
σtrue while σe,s shows only a spatial correlation of 0.41 (see Table 2). Both uncertainty
estimates based on formal variances, σ f and σ f ,m , have similarly small correlations
to σtrue with 0.48 for σ f and 0.44 for σ f ,m .

123



GEM - International Journal on Geomathematics            (2020) 11:24 Page 15 of 25    24 

−10
0

10

T
W

S
 [c

m
]

Congo

0

2

4

6

σ x
 [c

m
]

2002 2003 2004 2005 2006 2007

−10

0

10

T
W

S
 [c

m
]

Ob

0

2

4

6

8

10

σ x
 [c

m
]

2002 2003 2004 2005 2006 2007

0

5

T
W

S
 [c

m
]

Murray−Darling

0

2

4

6

8

10

σ x
 [c

m
]

2002 2003 2004 2005 2006 2007

σtrue σf σe,s
σf,m σe,t

Fig. 3 Time series of both terrestrial water storage signal (upper panels) and associated standard deviations
derived from four different realisations of the covariance model (σ f , σ f ,m , σe,s , σe,t ) together with the true
uncertainties (σtrue) as available from 60 months of simulated GRACE-FO gravity fields (lower panels) for
the river basins of Congo in Central Africa (top), Ob in Siberia (middle) and Murray Darling in Australia
(bottom)
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Fig. 4 Standard deviations for the 50 largest discharge basins in the world as derived from four different
realisations of the covariance model (σ f , σ f ,m , σe,s , σe,t ) together with the true uncertainties (σtrue) as
available from 60 months of simulated GRACE-FO gravity fields

Table 2 Correlation (R) and
global scaling factor (S) between
spatial maps of the mean basin
standard deviation for four
different realisations of the
covariance model (σ f , σ f ,m ,
σe,s , σe,t ) with respect to the
true uncertainties available from
the GRACE-FO satellite
simulation (σtrue)

σ f σ f ,m σe,s σe,t

Basins

R 0.48 0.44 0.41 0.83

S 0.95 0.42 0.35 0.50

5◦ grid

With Greenland and Antarctica

R − 0.20 0.35 0.27 − 0.14

Without Greenland and Antarctica

R − 0.16 − 0.25 0.43 0.20

S 2.30 3.58 2.26 2.36
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Fig. 5 Ratio between standard deviations derived from four different realisations of the covariance model
(σ f , σ f ,m , σe,s , σe,t ) and the true errors (σtrue) as available from 60 months of simulated GRACE-FO
gravity fields for the 50 largest discharge basins in the world

We conclude at this point that the modelled standard deviations do not always fit
the magnitude of the true standard deviations. Thus, we investigate the ratio between
the modelled and the true standard deviations globally (Fig. 5). The most homoge-
neous ratios are found for σe,t with values between 1 and 2. For σe,s , we see a vast
overestimation in the tropics. However, please be reminded that empirical correlations
used to estimate the correlation model form a conservative upper bound to the real
uncertainties. It is therefore plausible that the empirically-based standard deviations
are too large compared to the true ones. All in all, σ f fits best on a global average.

Lastly, we want to investigate the statistical equivalence of the true standard devi-
ations and the modelled ones. To this end, we employ a χ2-test. The χ2-test for the
variance equality compares an empirical variance (s2) with a modelled variance (σ 2)
and thus assess the probability that the empirical variance could originate from the
covariance model under consideration of the degree of freedom (N) (Snedecor and
Cochran 1989). The test statistic is

t = N · s2

σ 2 ∼ χ2
N . (18)

The test is carried out for each basin separately.However, naturally theχ2-test is highly
sensible to differences inmagnitude discussed above. Thus, to be able to apply the test,
we each scale the modelled standard deviations with a global factor (mean of the basin
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Fig. 6 p value of the χ2 test between scaled standard deviations derived from four different realisations of
the covariance model (σ f , σ f ,m , σe,s , σe,t ) and the true uncertainties (σtrue) as available from 60 months
of simulated GRACE-FO gravity fields for the 50 largest discharge basins in the world

ratios in Fig. 5, given in Table 2) which will be referred to with σ s
x . Introducing this

global scaling factor is equivalent to changing c0 in the estimated correlation models.
Rather than testing only if t is above or below the critical value of a confidence

interval, we investigate the p value of t . The p value range between 0 and 1, with values
around 0.5 indicating the best congruency between the true and modelled standard
deviations. Globally, σ s

e,t shows the best congruency with σ 2
true with 33 out of 50

basins with a p value between 5 and 95% (39 between 1 and 99%). Also, for this
model these basins are found on all continents. σ s

f ,m agrees well with σ 2
true, too, with

24 and 35 basins with a p value between 5 and 95% and 1 and 99%, respectively. In
some European and Siberian basins also σ s

e,s is fitting well, but overall only 11 basins
have a p value inside the 5–95% confidence interval (13 for 1–99%). 23 or 29 basins,
respectively, are fitting for σ s

f (Fig. 6).

4.4 Regular grid uncertainties

The covariance models are developed in a way to allow for the rapid calculation of
uncertainty for regions of arbitrary shape. This is demonstrated here for a regular 5◦
grid over the continents including the ice-covered regions ofGreenland andAntarctica.
Note that for grid cells along the coast, the standard deviation is calculated only from
land points in Eq. 17.

123



GEM - International Journal on Geomathematics            (2020) 11:24 Page 19 of 25    24 

Fig. 7 Standard deviations for regular 5◦ latitude-longitude grid boxes as derived from four different
realisations of the covariance model (σ f , σ f ,m , σe,s , σe,t ) together with the true uncertainties (σtrue) as
available from 60 months of simulated GRACE-FO gravity fields

Over the continents, the true uncertainties range between∼2.5cm in the tropics and
∼1.5cm at high latitudes (Fig. 7). Largest values are found in the grid cells covering
Lake Nasser in Egypt, and the Ganges-Bramaputra delta in Bangladesh. These are
caused by strong local signals in the input gravity field which are not properly resolved
from the synthetic GRACE-FO observations. Both formal variance-based standard
deviations σ f and σ f ,m again show a reversed latitude dependence with increasing
standard deviations towards the poles. Unlike for the basins above, σe,s is capturing
best the spatial pattern, but again is overestimating the magnitude especially in the
tropics. The poleward decline of σe,t is very well visible.

We also evaluate the similarity between the modelled standard deviations and the
true uncertainties with the correlation coefficient (Table 2). We find including the
ice-covered regions change the results significantly, hence we provide both the global
correlation coefficient with and without these regions. σe,s shows the largest similarity
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Fig. 8 Ratio between standard deviations derived from four different realisations of the covariance model
(σ f , σ f ,m , σe,s , σe,t ) and the true uncertainties (σtrue) as available from 60 months of simulated GRACE-
FO gravity fields for regular 5◦ latitude-longitude grid boxes

for ice-free regions (R = 0.43), and the correlation coefficient for σe,t is not as large
as for the basins with only R = 0.20. Both σ f and σ f ,m have a negative correlation
coefficient. Including Greenland and Antarctica changes the picture. Now, σ f ,m has
the highest spatial correlation with 0.35. However, the models were all not developed
for the ice-covered regions as θ ≤ 70◦ in Eq. 14, and thus, are not reliable there.

The ratio between the true and themodelled standarddeviations confirm the reversed
latitude dependence for σ f and σ f ,m (Fig. 8). Similar to the basins, σe,t has the most
homogeneous ratio globally, while the ratio of σe,s reveals again the overestimation
in the tropics.

Similar to the basin analysis, we perform the χ2 testing for the grid standard devi-
ations. As before, we scale the modelled standard deviations, where the scaling factor
is calculated only for ice-free regions (Table 2). Excluding Greenland and Antarctica,
801 grid cells remain for further analysis. Out of these, 503 are inside the 5–95%
interval for σ s

e,t and even 616 inside the 1–99% interval. Only the Himalaya, Nile
and central South-American regions are not fitting well (Fig. 9). In comparison, σ s

e,s
reaches only 186 and 247 grid cells, respectively. They are mostly located in Europe,
Siberia, and the African coast. For σ f ,m 448 and 554 fall inside the 5–95% and 1–99%
interval while σ f can explain 414 grid cells for the confidence interval 5–95% and
532 grid cells for the confidence interval 1–99%. For both σ f and σ f ,m the tropics are
less fitting while mid and high latitude show a good agreement with σtrue.
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Fig. 9 P-value of the χ2 test between scaled standard deviations derived from four different realisations of
the covariance model (σ f , σ f ,m , σe,s , σe,t ) and the true uncertainties (σtrue) as available from 60 months
of simulated GRACE-FO gravity fields for regular 5◦ latitude-longitude grid boxes

5 Conclusions and outlook

We developed a new anisotropic and non-homogeneous covariance model for glob-
ally gridded TWS from the GRACE and GRACE-FO satellite missions. The model
accommodates latitudinal non-homogeneity via scaling based on equator-symmetric
Legendre polynomial. The anisotropy is modelled with a latitude-dependent shape
factor which both allows for shorter correlation lengths in East-West than in North-
South direction. By using time-dependent point uncertainties in the model, the
non-stationarity of the GRACE-FO data can also be taken into account.

Four different candidate realisations of the covariance model (C f , C f ,m , Ce,s , and
Ce,t ) were thoroughly tested with simulated GRACE-FO data. Both formal covari-
ances and empirical correlations derived from the signal itself were contrasted against
true uncertainties readily available from the simulations for both the 50 largest dis-
charge basins as well as regular 5◦ latitude-longitude boxes. To augment the empirical
correlations, also empirical point uncertainties are needed: we tested both temporally
varying (i.e., one global uncertainty value for each monthly solution) and spatially
varying (i.e, one average uncertainty value for each location). We found that the for-
mer clearly outperforms all other tested variants for the 50 largest discharge basins.
In general, both empirically based covariance models overestimate the magnitude of
the uncertainties. But, this could be met by a global scaling factor derived from the
comparison between the estimated and the true uncertainties. Note that such a scaling
factor is equivalent to adjusting just one of the model parameters.
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The other three tested options also perform reasonably well for the largest basins.
However, for increasingly smaller averaging areas, we note thatmodelled uncertainties
based on the formal uncertainties become increasingly too optimistic which suggests
that spatial leakage not considered in the formal uncertainties is gradually gaining
importance. At these smaller scales, the spatially varying point uncertainties provide
the best fit in terms of spatial correlation with the true errors. Nevertheless, the tempo-
rally varying uncertainties perform best in the statistical χ2 test after applying a global
scaling calibration, so that we also recommend this option for use at the smaller spatial
scales.

It is important to recall that the parameters for the correlation model were estimated
in this study from synthetic GRACE-FO data only. Preliminary analysis of GFZ RL06
monthly data (Dahle et al. 2019) confirms the applicability of the new covariance
model for the latest generation of spherical harmonics solutions from GRACE-FO. It
appears that the latitude dependency of the uncertainties is somewhat higher than in the
simulated data which might require to re-consider the significance of the parameters
used in a(·) = a0(·) sin(φ(·)) + a1(·) (Eq. 5). We also note that the most recent
GRACE-FO data releases have more realistic uncertainties as compared to GFZ RL05
as used in the simulations.

We assumed in this study that the spatial correlation model is stationary in time,
and consequently estimated only a single solution from all available monthly gravity
fields. Any non-stationarity was therefore only modelled through the point standard
deviations. This assumption needs to be critically questioned for the transition from
GRACE to GRACE-FO: Whereas the observation geometry is similar for both mis-
sions, different correlation lengths might be easily introduced by slightly different
instrument characteristics that not only include the satellite-to-satellite tracking, but
also accelerometers and star trackers.

Based on simulated GRACE-FO data, this study demonstrates that realistic uncer-
tainties for arbitrarily shaped regions can be derived from the combination of a spatial
correlation model and globally gridded point uncertainties. With this information,
it becomes possible to derive uncertainties for arbitrarily shaped averaging regions
without consideration of data given in spherical harmonics, which can be difficult to
handle for non-geodetic users. The realism of the simulated data as well as our first
results obtain with real GRACE and GRACE-FO data indicate that this covariance
model can be readily applied to real data. We therefore include the empirical-temporal
covariance model (Ce,t ) developed here into the version 2 of the GFZ RL06 Level-3
TWS data available at GFZ’s gravity information system GravIS (http://gravis.gfz-
potsdam.de), where time-variable terrestrial water storage information from satellite
gravimetry and its associated uncertainties is made available also for non-geodetic
users.

Acknowledgements Open Access funding provided by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If

123

http://gravis.gfz-potsdam.de
http://gravis.gfz-potsdam.de


GEM - International Journal on Geomathematics            (2020) 11:24 Page 23 of 25    24 

material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Bandikova, T., McCullough, C., Kruizinga, G.L., Save, H., Christophe, B.: GRACE accelerometer data
transplant. Adv. Space Res. 64(3), 623–644 (2019)

Behrangi, A., Gardner, A., Reager, J.T., Fisher, J.B., Yang, D., Huffman, G.J., Adler, R.F.: Using GRACE
to estimate snowfall accumulation and assess gauge undercatch corrections in high latitudes. J. Clim.
31(21), 8689–8704 (2018)

Bergmann, I., Dobslaw, H.: Short-term transport variability of the Antarctic circumpolar current from
satellite gravity observations. J. Geophys. Res. Oceans (2012). https://doi.org/10.1029/2012JC007872

Boergens, E., Güntner, A., Dobslaw, H., Dahle, C.: Quantifying the central European droughts in 2018 and
2019 with GRACE-follow-on. Geophys. Res. Lett. (2020). https://doi.org/10.1029/2020GL087285

Chambers, D.P.: Observing seasonal steric sea level variations with GRACE and satellite altimetry. J.
Geophys. Res. 111(C3), C03010 (2006)

Dahle, C., Flechtner, F., Gruber, C., Koenig, D., Koenig, R., Michalak, G., Neumayer, K.-H.: GFZ GRACE
Level-2 Processing Standards Document for Level-2 Product Release 0005: Revised Edition, January
2013. Scientific Technical Report-Data; 12/02; ISSN 1610-0956 (2013)

Dahle, C., Murböck, M., Flechtner, F., Dobslaw, H., Michalak, G., Neumayer, K., Abrykosov, O., Reinhold,
A., König, R., Sulzbach, R., Förste, C.: The GFZ GRACE RL06 monthly gravity field time series:
processing details and quality assessment. Remote Sens. 11(18), 2116 (2019)

Darbeheshti, N., Featherstone, W.E.: Non-stationary covariance function modelling in 2D least-squares
collocation. J. Geod. 83(6), 495–508 (2009)

Dobslaw, H., Bergmann-Wolf, I., Dill, R., Forootan, E., Klemann, V., Kusche, J., Sasgen, I.: The updated
ESAEarth systemmodel for future gravity mission simulation studies. J. Geod. 89(5), 505–513 (2015)

Dobslaw, H., Bergmann-Wolf, I., Forootan, E., Dahle, C., Mayer-Gürr, T., Kusche, J., Flechtner, F.: Mod-
eling of present-day atmosphere and ocean non-tidal de-aliasing errors for future gravity mission
simulations. J. Geod. 90(5), 423–436 (2016)

Ecker, M.D., Gelfand, A.E.: Spatial modeling and prediction under stationary non-geometric range
anisotropy. Environ. Ecol. Stat. 10(2), 165–178 (2003)

Eicker, A., Schumacher, M., Kusche, J., Döll, P., Schmied, H.M.: Calibration/data assimilation approach
for integrating GRACE data into theWaterGAP global hydrology model (WGHM) using an ensemble
Kalman filter: first results. Surv. Geophys. 35(6), 1285–1309 (2014)

Flechtner, F., Neumayer, K.-H., Dahle, C., Dobslaw, H., Fagiolini, E., Raimondo, J.-C., Güntner, A.: What
can be expected from the GRACE-FO laser ranging interferometer for Earth science applications?
Surv. Geophys. 37(2), 453–470 (2016)

Gneiting, T.: Strictly and non-strictly positive definite functions on spheres. Bernoulli 19(4), 1327–1349
(2013)

Guinness, J., Fuentes, M.: Isotropic covariance functions on spheres: some properties and modeling con-
siderations. J. Multivar. Anal. 143, 143–152 (2016)

Güntner, A.: Improvement of global hydrological models using GRACE data. Surv. Geophys. 29(4–5),
375–397 (2008)

Huang,C., Zhang,H., Robeson, S.M.:On the validity of commonly used covariance and variogram functions
on the sphere. Math. Geosci. 43(6), 721–733 (2011)

Jäggi, A., Weigelt, M., Flechtner, F., Güntner, A., Mayer-Gürr, T., Martinis, S., Bruinsma, S., Flury, J.,
Bourgogne, S., Steffen, H., Meyer, U., Jean, Y., Sušnik, A., Grahsl, A., Arnold, D., Cann-Guthauser,
K., Dach, R., Li, Z., Chen, Q., van Dam, T., Gruber, C., Poropat, L., Gouweleeuw, B., Kvas, A.,
Klinger, B., Lemoine, J.-M., Biancale, R., Zwenzner, H., Bandikova, T., Shabanloui, A.: European
gravity service for improved emergency management (EGSIEM)–from concept to implementation.
Geophys. J. Int. 218(3), 1572–1590 (2019)

Jun,M., Stein,M.L.: AnApproach to producing space-time covariance functions on spheres. Technometrics
49(4), 468–479 (2007)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1029/2012JC007872
https://doi.org/10.1029/2020GL087285


   24 Page 24 of 25 GEM - International Journal on Geomathematics            (2020) 11:24 

Jun, M., Stein, M.L.: Nonstationary covariance models for global data. Ann. Appl. Stat. 2(4), 1271–1289
(2008)

Koch, K.-R., Kusche, J.: Regularization of geopotential determination from satellite data by variance com-
ponents. J. Geod. 76(5), 259–268 (2002)

Köhl, A., Siegismund, F., Stammer, D.: Impact of assimilating bottom pressure anomalies from GRACE on
ocean circulation estimates. J. Geophys. Res. Oceans (2012). https://doi.org/10.1029/2011JC007623

Kumar, S.V., Zaitchik, B.F., Peters-Lidard, C.D., Rodell, M., Reichle, R., Li, B., Jasinski, M., Mocko, D.,
Getirana, A., Lannoy, D., Gabrielle, C., Michael, H., Hain, C.R., Anderson, M., Arsenault, K.R., Xia,
Y., Ek, M.: Assimilation of gridded GRACE terrestrial water storage estimates in the North American
land data assimilation system. J. Hydrometeorol. 17(7), 1951–1972 (2016)

Kusche, J., Schmidt, R., Petrovic, S., Rietbroek, R.: Decorrelated GRACE time-variable gravity solutions
by GFZ, and their validation using a hydrological model. J. Geod. 83(10), 903–913 (2009)

Kvas, A., Behzadpour, S., Ellmer, M., Klinger, B., Strasser, S., Zehentner, N., Mayer-Gürr, T.: ITSG-
Grace2018: overview and evaluation of a new GRACE-only gravity field time series. J. Geophys. Res.
Solid Earth 124, 9332–9344 (2019)

Landerer, F.W., Swenson, S.C.: Accuracy of scaled GRACE terrestrial water storage estimates: accuracy of
GRACE-TWS. Water Resour. Res. (2012). https://doi.org/10.1029/2011WR011453

Ma, Y.Z., Jones, T.A.: Teacher’s aide: modeling hole-effect variograms of lithology-indicator variables.
Math. Geol. 33(5), 631–648 (2001)

Mateu, J., Porcu, E., Gregori, P.: Recent advances tomodel anisotropic space-time data. Stat. Methods Appl.
17(2), 209–223 (2008)

Mayer-Gürr, T., Savcenko, R., Bosch, W., Daras, I., Flechtner, F., Dahle, Ch.: Ocean tides from satellite
altimetry and GRACE. J. Geodyn. 59–60, 28–38 (2012)

Meier, S., Keller, W.: Geostatistik (Geostatistic), 1st edn. Springer, Wienna (1990)
Peralta-Ferriz, C., Morison, J.H., Wallace, J.M., Bonin, J.A., Zhang, J.: Arctic ocean circulation patterns

revealed by GRACE. J. Clim. 27(4), 1445–1468 (2014)
Reager, J.T., Thomas, B.F., Famiglietti, J.S.: River basin flood potential inferred using GRACE gravity

observations at several months lead time. Nat. Geosci. 7(8), 588 (2014)
Rodell, M., Velicogna, I., Famiglietti, J.S.: Satellite-based estimates of groundwater depletion in India.

Nature 460(7258), 999 (2009)
Rummel, R., Schwarz, K.P.: On the nonhomogeneity of the global covariance function. Bull. Geod. 51(2),

93–103 (1977)
Schrama, E.J.O., Wouters, B., Rietbroek, R.: A Mascon approach to assess ice sheet and glacier mass

balances and their uncertainties from GRACE data. J. Geophys. Res. Solid Earth 119(7), 6048–6066
(2014)

Schumacher, M., Forootan, E., van Dijk, A.I.J.M., Müller Schmied, H., Crosbie, R.S., Kusche, J., Döll, P.:
Improving drought simulationswithin theMurray–Darling basin by combined calibration/assimilation
of GRACE data into the WaterGAP global hydrology model. Remote Sens. Environ. 204, 212–228
(2018)

Snedecor, G.W., Cochran, W.G.: Statistical Methods, 8th edn. Iowa State University Press, Ames (1989)
Swenson, S., Wahr, J.: Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett.

33(8), L08402 (2006)
Swenson, S., Wahr, J., Milly, P.C.D.: Estimated accuracies of regional water storage variations inferred

from the gravity recovery and climate experiment (GRACE): regional water storage estimates from
grace. Water Resour. Res. (2003). https://doi.org/10.1029/2002WR001808

Tapley, B.D., Watkins, M.M., Flechtner, F., Reigber, C., Bettadpur, S., Rodell, M., Sasgen, I., Famiglietti,
J.S., Landerer, F.W., Chambers, D.P., Reager, J.T., Gardner, A.S., Save, H., Ivins, E.R., Swenson, S.C.,
Boening, C., Dahle, C., Wiese, D.N., Dobslaw, H., Tamisiea, M.E., Velicogna, I.: Contributions of
GRACE to understanding climate change. Nat. Clim. Change 9(5), 358–369 (2019)

Wahr, J., Swenson, S., Velicogna, I.: Accuracy of GRACE mass estimates. Geophys. Res. Lett. 33(6),
L06401 (2006)

Yaglom, A.M.: Correlation Theory of Stationarity and Related Random Functions. Vol. I: Basic Results.
Springer, New York (1987)

Zaitchik, B.F., Rodell, M., Reichle, R.H.: Assimilation of GRACE terrestrial water storage data into a land
surface model: results for the Mississippi River Basin. J. Hydrometeorol. 9(3), 535–548 (2008)

Zhang, L., Dobslaw, H., Thomas, M.: Globally gridded terrestrial water storage variations from GRACE
satellite gravimetry for hydrometeorological applications. Geophys. J. Int. 206(1), 368–378 (2016)

123

https://doi.org/10.1029/2011JC007623
https://doi.org/10.1029/2011WR011453
https://doi.org/10.1029/2002WR001808


GEM - International Journal on Geomathematics            (2020) 11:24 Page 25 of 25    24 

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Eva Boergens1 · Henryk Dobslaw1 · Robert Dill1 ·Maik Thomas1,2 ·
Christoph Dahle3 ·Michael Murböck3,4 · Frank Flechtner3,4

B Eva Boergens
boergens@gfz-potsdam.de

1 Section 1.3 Earth System Modelling, Deutsches GeoForschungsZentrum GFZ, Telegrafenberg,
14473 Potsdam, Germany

2 Institute of Meteorology, Freie Universität Berlin, Carl-Heinrich-Becker-Weg 6-10, 12165
Berlin, Germany

3 Section 1.2 Globales Geomonitoring und Schwerefeld, Deutsches GeoForschungsZentrum GFZ,
Telegrafenberg, 14473 Potsdam, Germany

4 Institute of Geodesy and Geoinformation Science, Technische Universität Berlin, Strasse des 17.
Juni 135, 10623 Berlin, Germany

123

http://orcid.org/0000-0001-6178-9402
http://orcid.org/0000-0003-1776-3314
http://orcid.org/0000-0002-9596-267X
http://orcid.org/0000-0002-4733-9242
http://orcid.org/0000-0002-4108-578X
http://orcid.org/0000-0002-3093-5558

	Modelling spatial covariances for terrestrial water storage variations verified with synthetic GRACE-FO data
	Abstract
	1 Introduction
	2 Contributions to the GRACE and GRACE-FO error budget
	3 Design of a spatial covariance model
	3.1 Validity of the covariance function on the sphere

	4 Synthetic GRACE-FO data
	4.1 Formal variances
	4.1.1 Formal variance propagation
	4.1.2 Estimated correlation model from formal variances

	4.2 Empirical variances
	4.2.1 Empirical variance and correlation estimation
	4.2.2 Estimated correlation model from empirical correlations

	4.3 Uncertainty for river basins
	4.4 Regular grid uncertainties

	5 Conclusions and outlook
	Acknowledgements
	References




