13 research outputs found

    Combination Service for Time-variable Gravity Fields (COST-G): operations and new developments

    Get PDF
    Since its start of operations in July 2019, IAGâ?Ts Combination Service for Time-variable Gravity fields (COST-G) is providing a complete time-series of combined monthly GRACE gravity fields and a regularly updated time-series of monthly gravity fields derived from kinematic Swarm orbits. Starting from October 2020, the COST-G product line is complemented by a time-series of operationally combined and monthly updated GRACE-FO gravity fields. All these combinations are performed by variance component estimation on the solution level. We report on new developments, i.e., a planned extension of COST-G to include Chinese analysis centers of GRACE and GRACE-FO data, a re-consideration of the combination strategy to better focus on the range of spherical harmonic coefficients most relevant for the users, and the potential application of COST-G products for orbit determination of altimeter satellites

    Combination Service for Time-variable Gravity Fields: operational GRACE-FO combination and validation of Chinese GRACE time-series

    Get PDF
    The Combination Service for Time-variable Gravity Fields (COST-G) of the International Association of Geodesy (IAG) provides combined monthly gravity fields of its associated and partner Analysis Centers (ACs). In November 2020, the combination of monthly GRACE-FO gravity fields started its operational mode, providing consolidated L2 (spherical harmonics) and L3 (gridded and post-processed) products with a latency of currently 3 months. We present an overview and quality assessment of the available products. COST-G aims at the extension of its service to include further GRACE and GRACE-FO analysis centers. In January 2020 a collaboration with representatives of five Chinese ACs was initiated, who provided GRACE time-series according to the COST-G requirements. We present the results of a test combination with the Chinese AC models, including comparison and quality assessment of all contributing time-series and validation of the combined gravity fields

    Micro-connectomics: probing the organization of neuronal networks at the cellular scale.

    Get PDF
    Defining the organizational principles of neuronal networks at the cellular scale, or micro-connectomics, is a key challenge of modern neuroscience. In this Review, we focus on graph theoretical parameters of micro-connectome topology, often informed by economical principles that conceptually originated with RamĂłn y Cajal's conservation laws. First, we summarize results from studies in intact small organisms and in samples from larger nervous systems. We then evaluate the evidence for an economical trade-off between biological cost and functional value in the organization of neuronal networks. Various results suggest that many aspects of neuronal network organization are indeed the outcome of competition between these two fundamental selection pressures.This work was supported by the National Institute of Health Research (NIHR) Cambridge Biomedical Research Centre.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by the Nature Publishing Group

    Architecture of a mammalian glomerular domain revealed by novel volume electroporation using nanoengineered microelectrodes

    Get PDF
    Dense microcircuit reconstruction techniques have begun to provide ultrafine insight into the architecture of small-scale networks. However, identifying the totality of cells belonging to such neuronal modules, the “inputs” and “outputs,” remains a major challenge. Here, we present the development of nanoengineered electroporation microelectrodes (NEMs) for comprehensive manipulation of a substantial volume of neuronal tissue. Combining finite element modeling and focused ion beam milling, NEMs permit substantially higher stimulation intensities compared to conventional glass capillaries, allowing for larger volumes configurable to the geometry of the target circuit. We apply NEMs to achieve near-complete labeling of the neuronal network associated with a genetically identified olfactory glomerulus. This allows us to detect sparse higher-order features of the wiring architecture that are inaccessible to statistical labeling approaches. Thus, NEM labeling provides crucial complementary information to dense circuit reconstruction techniques. Relying solely on targeting an electrode to the region of interest and passive biophysical properties largely common across cell types, this can easily be employed anywhere in the CNS
    corecore