25 research outputs found
Late-season snowfall is associated with decreased offspring survival in two migratory arctic-breeding songbird species
While the effect of weather on reproduction has been studied for many years in avian taxa, the rapid pace of climate change in arctic regions has added urgency to this question by changing the weather conditions species experience during breeding. Given this, it is important to understand how factors such as temperature, rain, snowfall, and wind affect reproduction both directly and indirectly (e.g. through their effects on food availability). In this study, we ask how weather factors and food availability influence daily survival rates of clutches in two arctic-breeding migratory songbirds: the Lapland longspur Calcarius lapponicus , a circumpolar breeder, and Gambelâs white-crowned sparrow Zonotrichia leucophrys gambelii , which breeds in shrubby habitats across tundra, boreal and continental climates. To do this, we monitored clutch survival in these two species from egg-lay through fledge at field sites located near Toolik Field Station (North Slope, Alaska) across 5 yr (2012â2016). Our results indicate that snowfall and cold temperatures decreased offspring survival rates in both species; although Lapland longspurs were more susceptible to snowfall. Food availability, quantified by pitfall sampling and sweep-net sampling methods, had minimal effects on offspring survival. Some climate models predict increased precipitation for the Arctic with global warming, and in the Toolik region, total snow accumulation may be increasing. Placed in this context, our results suggest that changes in snow storms with climate change could have substantial consequences for reproduction in migratory songbirds breeding in the North American Arctic
Reduction in primary production followed by rapid recovery of plant biomass in response to repeated mid-season droughts in a semiarid shrubland
The frequency and severity of extreme weather events, including droughts, are expected to increase due to the climate change. Climate manipulation field experiments are widely used tools to study the response of key parameters like primary production to the treatments. Our study aimed to detect the effect of drought on the aboveground biomass and primary production both during the treatments as well as during the whole growing seasons in semiarid vegetation. We estimated aboveground green biomass of vascular plants in a Pannonian sand forest-steppe ecosystem in Hungary. We applied non-destructive field remote sensing method in control and drought treatments. Drought treatment was carried out by precipitation exclusion in May and June, and was repeated in each year from 2002. We measured NDVI before the drought treatment, right after the treatment, and at the end of the summer in 2011 and 2013. We found that the yearly biomass peaks, measured in control plots after the treatment periods, were decreased or absent in drought treatment plots, and consequently, the aboveground net primary production was smaller than in the control plots. At the same time, we did not find general drought effects on all biomass data. The studied ecosystem proved resilient, as the biomass in the drought-treated plots recovered by the next drought treatment. We conclude that the effect of drought treatment can be overestimated with only one measurement at the time of the peak biomass, while multiple within-year measurements better describe the response of biomass
Tactical departures and strategic arrivals: Divergent effects of climate and weather on caribou spring migrations
The Arctic has been warming rapidly, affecting ecological processes across the region. Caribou and reindeer (Rangifer tarandus) is a keystone Arctic species undergoing declines in many parts of its range, but definitive links between climate and populations remain elusive. The conspicuous and dramatic mass migration of many caribou populations, during which nearly all pregnant females move from wintering ranges to calving grounds shortly before giving birth, may be an important link between climate and caribou populations. The drivers of migration, however, are similarly mysterious. It is unknown, for example, whether caribou respond to immediate phenological cues, anticipate conditions on calving grounds, or are driven by lagged effects related to physical condition. To investigate the drivers of migration, we analyzed movement data from over 1000 individual caribou from seven major herds, spanning 3000 km across Alaska, Yukon, Northwest Territories (NWT), and Nunavut in Canada, from 1995 to 2017. We developed a hierarchical model to estimate migration departure and arrival times, and analyzed these variables against global climate indices and local weather conditions, exploring immediate and lagged effects, as well as snowmelt timing and vegetation indices. We discovered a continent-wide synchrony in spring migration departure times, driven mainly by large-scale, ocean-driven climate indices (Pacific Decadal Oscillation, Arctic Oscillation, and North Atlantic Oscillation). However, we also found that the speed of migration was highly plastic with later migration departure times followed by shorter migration durations. This plasticity made arrival timing independent of departure timing and its respective drivers. Rather, arrival timing depended strongly on weather conditions from the previous summer: cooler and windier summers generally led to earlier arrival at calving grounds the following year. We suggest that maternal body condition, mainly influenced by conditions that limit insect harassment, is a major factor for earlier spring migration arrival timing, and therefore earlier calving and higher survival rates. We place these results in the context of mechanistic links between climate and caribou population dynamics. Long-term and large-scale observations of migratory animals can provide insights into the mechanisms by which long-distance, collective migrants may adapt to dynamic and unpredictable environments
A mechanism of expansion:Arctic deciduous shrubs capitalize on warming-induced nutrient availability
Future emerging technologies in the wind power sector: A European perspective
This paper represents an expert view from Europe of future emerging technologies within the wind energy sector considering their potential, challenges, applications and technology readiness and how they might evolve in the coming years. These technologies were identified as originating primarily from the academic sector, some start-up companies and a few larger industrial entities. The following areas were considered: airborne wind energy, offshore floating concepts, smart rotors, wind-induced energy harvesting devices, blade tip-mounted rotors, unconventional power transmission systems, multi-rotor turbines, alternative support structures, modular high voltage direct current generators, innovative blade manufacturing techniques, diffuser-augmented turbines and small turbine technologies. The future role of advanced multiscale modelling and data availability is also considered. This expert review has highlighted that more research will be required to realise many of these emerging technologies. However, there is a need to identify synergies between fundamental and industrial research by correctly targeting public and private funding in these emerging technology areas as industrial development may outpace more fundamental research faster than anticipated
Workshop on identification of future emerging technologies in the ocean energy sector. 27th March 2018 Ispra, Italy
As part of the European Commission's internal Low Carbon Energy Observatory (LCEO) project, the Joint Research Centre (JRC) is developing an inventory of Future Emerging Technologies (FET) relevant to energy supply. A key part of the LCEO initiative is the consultation of external experts, addressing both those with in-depth experience in specific fields and those with a broad perspective on relevant science and engineering aspects. In this context, on March 27, 2018 the JRC organised a Workshop on Identification of Future Emerging Technologies for Ocean Energy, on it premises in Ispra. The workshop was organised on the idea of a colloquium between international experts to discuss about future emerging technologies considering different aspects such as their technology readiness level (TRL), the potential advantages and challenges affecting their development, and evaluating the possible speed of development