42 research outputs found

    Light spin-1/2 or spin-0 Dark Matter particles

    Full text link
    We recall and precise how light spin-0 particles could be acceptable Dark Matter candidates, and extend this analysis to spin-1/2 particles. We evaluate the (rather large) annihilation cross sections required, and show how they may be induced by a new light neutral spin-1 boson U. If this one is vectorially coupled to matter particles, the (spin-1/2 or spin-0) Dark Matter annihilation cross section into e+e- automatically includes a v_dm^2 suppression factor at threshold, as desirable to avoid an excessive production of gamma rays from residual Dark Matter annihilations. We also relate Dark Matter annihilations with production cross sections in e+e- scatterings. Annihilation cross sections of spin-1/2 and spin-0 Dark Matter particles are given by exactly the same expressions. Just as for spin-0, light spin-1/2 Dark Matter particles annihilating into e+e- could be responsible for the bright 511 keV gamma ray line observed by INTEGRAL from the galactic bulge.Comment: 10 page

    Possible Evidence For Axino Dark Matter In The Galactic Bulge

    Full text link
    Recently, the SPI spectrometer on the INTEGRAL satellite observed strong 511 keV line emission from the galactic bulge. Although the angular distribution (spherically symmetric with width of \sim 9 degree) of this emission is difficult to account for with traditional astrophysical scenarios, light dark matter particles could account for the observation. In this letter, we consider the possibility that decaying axinos in an R-parity violating model of supersymmetry may be the source of this emission. We find that \sim 1-300 MeV axinos with R-parity violating couplings can naturally produce the observed emission.Comment: 4 pages, 1 figure. Version accepted by Physical Review

    Light Stop Decay in the MSSM with Minimal Flavour Violation

    Full text link
    In supersymmetric scenarios with a light stop particle t~1\tilde{t}_1 and a small mass difference to the lightest supersymmetric particle (LSP) assumed to be the lightest neutralino, the flavour changing neutral current decay t~1→cχ~10\tilde{t}_1 \to c \tilde{\chi}_1^0 can be the dominant decay channel and can exceed the four-body stop decay for certain parameter values. In the framework of Minimal Flavour Violation (MFV) this decay is CKM-suppressed, thus inducing long stop lifetimes. Stop decay length measurements at the LHC can then be exploited to test models with minimal flavour breaking through Standard Model Yukawa couplings. The decay width has been given some time ago by an approximate formula, which takes into account the leading logarithms of the MFV scale. In this paper we calculate the exact one-loop decay width in the framework of MFV. The comparison with the approximate result exhibits deviations of the order of 10% for large MFV scales due to the neglected non-logarithmic terms in the approximate decay formula. The difference in the branching ratios is negligible. The large logarithms have to be resummed. The resummation is performed by the solution of the renormalization group equations. The comparison of the exact one-loop result and the tree level flavour changing neutral current decay, which incorporates the resummed logarithms, demonstrates that the resummation effects are important and should be taken into account.Comment: 29 page

    Can annihilating Dark Matter be lighter than a few GeVs?

    Full text link
    We estimate the gamma ray fluxes from the residual annihilations of Dark Matter particles having a mass mdm \in [MeV, O(GeV)] and compare them to observations. We find that particles lighter than O(100 MeV) are excluded unless their cross section is S-wave suppressed.Comment: 4 pages. No figure. Values corrected (last column Table.1). Text clarified. Conclusions unchange

    Three-Body Decays of Top and Bottom Squarks

    Full text link
    We investigate the decays of third generation scalar quarks in the Minimal Supersymmetric extension of the Standard Model, focusing on the three-body modes. We calculate the partial widths of the decays of heavier top and bottom squarks into the lighter ones and a fermion pair [through virtual vector boson, Higgs boson or gaugino exchanges] and the partial widths of the three-body decays of both top squarks into bottom quarks and a pair of fermion and scalar fermion [we consider the case of lighter τ~\tilde{\tau} or b~\tilde{b} states] and into a bottom quark, the lightest neutralino and a WW or a charged Higgs boson H±H^\pm. Some of these decay modes are shown to have substantial branching ratios in some areas of the parameter space.Comment: 24 pages with 4 psfigures, late

    Dark Force Detection in Low Energy e-p Collisions

    Get PDF
    We study the prospects for detecting a light boson X with mass m_X < 100 MeV at a low energy electron-proton collider. We focus on the case where X dominantly decays to e+ e- as motivated by recent "dark force" models. In order to evade direct and indirect constraints, X must have small couplings to the standard model (alpha_X 10 MeV). By comparing the signal and background cross sections for the e- p e+ e- final state, we conclude that dark force detection requires an integrated luminosity of around 1 inverse attobarn, achievable with a forthcoming JLab proposal.Comment: 38 pages, 19 figures; v2, references adde

    Low-Energy Probes of a Warped Extra Dimension

    Full text link
    We investigate a natural realization of a light Abelian hidden sector in an extended Randall-Sundrum (RS) model. In addition to the usual RS bulk we consider a second warped space containing a bulk U(1)_x gauge theory with a characteristic IR scale of order a GeV. This Abelian hidden sector can couple to the standard model via gauge kinetic mixing on a common UV brane. We show that if such a coupling induces significant mixing between the lightest U(1)_x gauge mode and the standard model photon and Z, it can also induce significant mixing with the heavier U(1)_x Kaluza-Klein (KK) modes. As a result it might be possible to probe several KK modes in upcoming fixed-target experiments and meson factories, thereby offering a new way to investigate the structure of an extra spacetime dimension.Comment: 26 pages, 1 figure, added references, corrected minor typos, same as journal versio

    Top-squark searches at the Tevatron in models of low-energy supersymmetry breaking

    Get PDF
    We study the production and decays of top squarks (stops) at the Tevatron collider in models of low-energy supersymmetry breaking. We consider the case where the lightest Standard Model (SM) superpartner is a light neutralino that predominantly decays into a photon and a light gravitino. Considering the lighter stop to be the next-to-lightest Standard Model superpartner, we analyze stop signatures associated with jets, photons and missing energy, which lead to signals naturally larger than the associated SM backgrounds. We consider both 2-body and 3-body decays of the top squarks and show that the reach of the Tevatron can be significantly larger than that expected within either the standard supergravity models or models of low-energy supersymmetry breaking in which the stop is the lightest SM superpartner. For a modest projection of the final Tevatron luminosity, L = 4 fb-1, stop masses of order 300 GeV are accessible at the Tevatron collider in both 2-body and 3-body decay modes. We also consider the production and decay of ten degenerate squarks that are the supersymmetric partners of the five light quarks. In this case we find that common squark masses up to 360 GeV are easily accessible at the Tevatron collider, and that the reach increases further if the gluino is light.Comment: 32 pages, 9 figures; references adde
    corecore