426 research outputs found
Breakdown of the perturbative renormalization group for S >= 1 random antiferromagnetic spin chains
We investigate the application of a perturbative renormalization group (RG)
method to random antiferromagnetic Heisenberg chains with arbitrary spin size.
At zero temperature we observe that initial arbitrary probability distributions
develop a singularity at J=0, for all values of spin S. When the RG method is
extended to finite temperatures, without any additional assumptions, we find
anomalous results for S >= 1. These results lead us to conclude that the
perturbative scheme is not adequate to study random chains with S >= 1.
Therefore a random singlet phase in its more restrictive definition is only
assured for spin-1/2 chains.Comment: 5 pages, 3 figures. To appear in Physical Review
Single and Double Photoionization and Photodissociation of Toluene by Soft X-rays in Circumstellar Environment
The formation of polycyclic aromatic hydrocarbons (PAHs) and their methyl
derivatives occurs mainly in the dust shells of asymptotic giant branch (AGB)
stars. The bands at 3.3 and 3.4 m, observed in infrared emission spectra
of several objects, are attributed C-H vibrational modes in aromatic and
aliphatic structures, respectively. In general, the feature at 3.3 m is
more intense than the 3.4 m. Photoionization and photodissociation
processes of toluene, the precursor of methylated PAHs, were studied using
synchrotron radiation at soft X-ray energies around the carbon K edge with
time-of-flight mass spectrometry. Partial ion yields of a large number of ionic
fragments were extracted from single and 2D-spectra, where electron-ion
coincidences have revealed the doubly charged parent-molecule and several
doubly charged fragments containing seven carbon atoms with considerable
abundance. \textit{Ab initio} calculations based on density functional theory
were performed to elucidate the chemical structure of these stable dicationic
species. The survival of the dications subjected to hard inner shell ionization
suggests that they could be observed in the interstellar medium, especially in
regions where PAHs are detected. The ionization and destruction of toluene
induced by X-rays were examined in the T Dra conditions, a carbon-rich AGB
star. In this context, a minimum photodissociation radius and the half-life of
toluene subjected to the incidence of the soft X-ray flux emitted from a
companion white dwarf star were determined.Comment: 11 pages, 4 figures, accept for publication in Ap
Molecules with a peptide link in protostellar shocks: a comprehensive study of L1157
Interstellar molecules with a peptide link -NH-C(=O)-, like formamide
(NHCHO), acetamide (NHCOCH) and isocyanic acid (HNCO) are
particularly interesting for their potential role in pre-biotic chemistry. We
have studied their emission in the protostellar shock regions L1157-B1 and
L1157-B2, with the IRAM 30m telescope, as part of the ASAI Large Program.
Analysis of the line profiles shows that the emission arises from the outflow
cavities associated with B1 and B2. Molecular abundance of
and are derived for
formamide and isocyanic acid, respectively, from a simple rotational diagram
analysis. Conversely, NHCOCH was not detected down to a relative
abundance of a few . B1 and B2 appear to be among the richest
Galactic sources of HNCO and NHCHO molecules. A tight linear correlation
between their abundances is observed, suggesting that the two species are
chemically related. Comparison with astrochemical models favours molecule
formation on ice grain mantles, with NHCHO generated from hydrogenation of
HNCO.Comment: 11 pages, 9 figures. Accepted for publication in MNRAS Main Journal.
Accepted 2014 August 19, in original form 2014 July
Dissociation of the benzene molecule by UV and soft X-rays in circumstellar environment
Benzene molecules, present in the proto-planetary nebula CRL 618, are ionized
and dissociated by UV and X-ray photons originated from the hot central star
and by its fast wind. Ionic species and free radicals produced by these
processes can lead to the formation of new organic molecules. The aim of this
work is to study the photoionization and photodissociation processes of the
benzene molecule, using synchrotron radiation and time of flight mass
spectrometry. Mass spectra were recorded at different energies corresponding to
the vacuum ultraviolet (21.21 eV) and soft X-ray (282-310 eV) spectral regions.
The production of ions from the benzene dissociative photoionization is here
quantified, indicating that C6H6 is more efficiently fragmented by soft X-ray
than UV radiation, where 50% of the ionized benzene molecules survive to UV
dissociation while only about 4% resist to X-rays. Partial ion yields of H+ and
small hydrocarbons such as C2H2+, C3H3+ and C4H2+ are determined as a function
of photon energy. Absolute photoionization and dissociative photoionization
cross sections have also been determined. From these values, half-life of
benzene molecule due to UV and X-ray photon fluxes in CRL 618 were obtained.Comment: The paper contains 8 pages, 9 figures and 4 tables. Accepted to be
published on MNRAS on 2008 November 2
Entanglement Entropy in Random Quantum Spin-S Chains
We discuss the scaling of entanglement entropy in the random singlet phase
(RSP) of disordered quantum magnetic chains of general spin-S. Through an
analysis of the general structure of the RSP, we show that the entanglement
entropy scales logarithmically with the size of a block and we provide a closed
expression for this scaling. This result is applicable for arbitrary quantum
spin chains in the RSP, being dependent only on the magnitude S of the spin.
Remarkably, the logarithmic scaling holds for the disordered chain even if the
pure chain with no disorder does not exhibit conformal invariance, as is the
case for Heisenberg integer spin chains. Our conclusions are supported by
explicit evaluations of the entanglement entropy for random spin-1 and spin-3/2
chains using an asymptotically exact real-space renormalization group approach.Comment: 5 pages, 4 figure
[1-(3-ChloroÂphenÂyl)-1H-1,2,3-triazol-4-yl]methanol hemihydrate
The asymmetric unit of the title hydrate, C9H8ClN3O·0.5H2O, comprises two independent 1,2,3-triazole molÂecules and a water molÂecule of crystallization. The dihedral angles between the six- and five-membered rings in the 1,2,3-triazole molÂecules are 12.71 (19) and 17.3 (2)°. The most significant different between them is found in the relative orientations of the terminal CH2OH groups with one being close to perpendicular to the five-membered ring [N—C—C—O torsion angle = 82.2 (5)°], while in the other molÂecule, a notable deviation from a perpendicular disposition is found [torsion angle = −60.3 (5)°]. SupraÂmolecular chains feature in the crystal packing sustained by O—H⋯(O,N) interÂactions along the a-axis direction. The chains are connected via C—H⋯N interÂactions and the resultant layers stack along the b axis
Ising Spin Glass in a Transverse Magnetic Field
We study the three-dimensional quantum Ising spin glass in a transverse
magnetic field following the evolution of the bond probability distribution
under Renormalisation Group transformations. The phase diagram (critical
temperature {\em vs} transverse field ) we obtain shows a finite
slope near , in contrast with the infinite slope for the pure case. Our
results compare very well with the experimental data recently obtained for the
dipolar Ising spin glass LiHoYF, in a transverse field.
This indicates that this system is more apropriately described by a model with
short range interactions than by an equivalent Sherrington-Kirkpatrick model in
a transverse field.Comment: 7 pages, RevTeX3, Nota Cientifica PUC-Rio 23/9
- …