1,931 research outputs found

    Characterization of Organic Materials in the Xenolithic Clasts in Sharps (H3.4) Meteorite Using Microraman Spectroscopy

    Get PDF
    Graphitization of carbon is an irreversible process which alters the structure of graphitic materials in response to the increase in metamorphic grade (temperature and/or pressure). Carbonaceous materials offer a reliable geothermometer as their Raman spectra change systematically with increasing metamorphic grade [1-3]. In this study, we identified carbonaceous materials in the xenolithic clasts in Sharps and interpreted their metamorphic history by revealing the structural organization (order) of the polyaromatic organic phases using -Raman spectroscopy

    Characterization of Organic Materials in the Xenolithic Clasts in Sharps (H3.4) Meteorite Using Micro-Raman Spectroscopy

    Get PDF
    Graphitization of carbon is an irreversible process which alters the structure of graphitic materials in response to the increase in metamorphic grade (temperature and/or pressure). Carbonaceous materials offer a reliable geothermometer as their Raman spectra change systematically with increasing metamorphic grade. In this study, we identified carbonaceous materials in the xenolithic clasts in Sharps and interpreted their metamorphic history by revealing the structural organization (order) of the polyaromatic organic phases using micro-Raman spectroscopy

    A Closed-Form Solution of the Multi-Period Portfolio Choice Problem for a Quadratic Utility Function

    Full text link
    In the present paper, we derive a closed-form solution of the multi-period portfolio choice problem for a quadratic utility function with and without a riskless asset. All results are derived under weak conditions on the asset returns. No assumption on the correlation structure between different time points is needed and no assumption on the distribution is imposed. All expressions are presented in terms of the conditional mean vectors and the conditional covariance matrices. If the multivariate process of the asset returns is independent it is shown that in the case without a riskless asset the solution is presented as a sequence of optimal portfolio weights obtained by solving the single-period Markowitz optimization problem. The process dynamics are included only in the shape parameter of the utility function. If a riskless asset is present then the multi-period optimal portfolio weights are proportional to the single-period solutions multiplied by time-varying constants which are depending on the process dynamics. Remarkably, in the case of a portfolio selection with the tangency portfolio the multi-period solution coincides with the sequence of the simple-period solutions. Finally, we compare the suggested strategies with existing multi-period portfolio allocation methods for real data.Comment: 38 pages, 9 figures, 3 tables, changes: VAR(1)-CCC-GARCH(1,1) process dynamics and the analysis of increasing horizon are included in the simulation study, under revision in Annals of Operations Researc

    NUMERICAL ANALYSIS OF LIQUID FRACTION AND HEAT FLUX IN THE SOLIDIFICATION PROCESS OF ERYTHRITOL IN SPHERES

    Get PDF
    The demand for renewable energy resources and the need for the development of components which increase how it collects, transforms, stores and distributes this energy, emphasizes the importance of improving current technological systems to meet these demands. Phase change materials (PCM) offer great potential in this area. as they can increase energy efficiency in thermal systems as well as save energy by storing solar energy or waste heat from industrial processes, which is made possible by the high amount of energy stored per mass and volume unit, with low temperature variation. Therefore, it is of high importance that the suggested mathematical and numerical models are capable of analyzing its energy performance. The present work uses a mathematical and numerical model of Computational Fluid Dynamics (CFD), capable of reproducing the solidification process of erythritol in spheres of 10, 20, 30 and 40 mm diameters, with temperature differences of 10, 15, 20, 25, 30 and 40 K between the sphere wall and the phase change temperature of the material. The problem is considered two- dimensional and transient. The model consists of mass, energy, momentum and volume fraction equations. The mathematical and numerical model is validated with experimental results from the literature, presenting good agreement between them. After space and time discretization tests, we analyze liquid fraction over time and heat flux at the sphere wall. The results show that liquid fraction suffers a strong reduction in the beginning of the solidification process due to the high heat flux in the early stages. As the solid layer near the wall increases, it causes an increase in thermal resistance, causing a significant reduction in heat flux

    A Quartz-bearing Orthopyroxene-rich Websterite Xenolith from the Pannonian Basin, Western Hungary: Evidence for Release of Quartz-saturated Melts from a Subducted Slab

    Get PDF
    An unusual quartz-bearing orthopyroxene-rich websterite xenolith has been found in an alkali basaltic tuff at Szigliget, Bakony-Balaton Highland Volcanic Field (BBHVF), western Hungary. Ortho- and clinopyroxenes are enriched in light rare earth elements (LREE), middle REE and Ni, and depleted in Nb, Ta, Sr and Ti compared with ortho- and clinopyroxenes occurring in either peridotite or lower crustal granulite xenoliths from the BBHVF. Both ortho- and clinopyroxenes in the xenolith contain primary and secondary silicate melt inclusions, and needle-shaped or rounded quartz inclusions. The melt inclusions are rich in SiO2 and alkalis and poor in MgO, FeO and CaO. They are strongly enriched in LREE and large ion lithophile elements, and display negative Nb, Ta and Sr anomalies, and slightly positive Pb anomalies. The xenolith is interpreted to represent a fragment of an orthopyroxene-rich body that crystallized in the upper mantle from a hybrid melt that formed by interaction of mantle peridotite with a quartz-saturated silicate melt that was released from a subducted oceanic slab. Although the exact composition of the slab melt cannot be determined, model calculations on major and trace elements suggest involvement of a metasedimentary componen

    A Quartz-bearing Orthopyroxene-rich Websterite Xenolith from the Pannonian Basin, Western Hungary: Evidence for Release of Quartz-saturated Melts from a Subducted Slab

    Get PDF
    An unusual quartz-bearing orthopyroxene-rich websterite xenolith has been found in an alkali basaltic tuff at Szigliget, Bakony-Balaton Highland Volcanic Field (BBHVF), western Hungary. Ortho- and clinopyroxenes are enriched in light rare earth elements (LREE), middle REE and Ni, and depleted in Nb, Ta, Sr and Ti compared with ortho- and clinopyroxenes occurring in either peridotite or lower crustal granulite xenoliths from the BBHVF. Both ortho- and clinopyroxenes in the xenolith contain primary and secondary silicate melt inclusions, and needle-shaped or rounded quartz inclusions. The melt inclusions are rich in SiO2 and alkalis and poor in MgO, FeO and CaO. They are strongly enriched in LREE and large ion lithophile elements, and display negative Nb, Ta and Sr anomalies, and slightly positive Pb anomalies. The xenolith is interpreted to represent a fragment of an orthopyroxene-rich body that crystallized in the upper mantle from a hybrid melt that formed by interaction of mantle peridotite with a quartz-saturated silicate melt that was released from a subducted oceanic slab. Although the exact composition of the slab melt cannot be determined, model calculations on major and trace elements suggest involvement of a metasedimentary componen

    Analysis of Direct Samples of Early Solar System Aqueous Fluids

    Get PDF
    Over the past three decades we have become increasingly aware of the fundamental importance of water, and aqueous alteration, on primitive solar-system bodies. Some carbonaceous and ordinary chondrites have been altered by interactions with liquid water within the first 10 million years after formation of their parent asteroids. Millimeter to centimeter-sized aggregates of purple halite containing aqueous fluid inclusions were found in the matrix of two freshly-fallen brecciated H chondrite falls, Monahans (1998, hereafter simply "Monahans") (H5) and Zag (H3-6) (Zolensky et al., 1999; Whitby et al., 2000; Bogard et al., 2001) In order to understand origin and evolution of the aqueous fluids inside these inclusions we much measure the actual fluid composition, and also learn the O and H isotopic composition of the water. It has taken a decade for laboratory analytical techniques to catch up to these particular nanomole-sized aqueous samples. We have recently been successful in (1) measuring the isotopic composition of H and O in the water in a few fluid inclusions from the Zag and Monahans halite, (2) mineralogical characterization of the solid mineral phases associated with the aqueous fluids within the halite, and (3) the first minor element analyses of the fluid itself. A Cameca ims-1270 equipped with a cryo-sample-stage of Hokkaido University was specially prepared for the O and H isotopic measurements. The cryo-sample-stage (Techno. I. S. Corp.) was cooled down to c.a. -190 C using liquid nitrogen at which the aqueous fluid in inclusions was frozen. We excavated the salt crystal surfaces to expose the frozen fluids using a 15 keV Cs+ beam and measured negative secondary ions. The secondary ions from deep craters of approximately 10 m in depth emitted stably but the intensities changed gradually during measurement cycles because of shifting states of charge compensation, resulting in rather poor reproducibility of multiple measurements of standard fluid inclusions of +/- 90 0/00(2 sigma) for delta D, and +/- 29 0/00 (2 sigma) for delta O-18. On the other hand, the reproducibility of Delta O-17 is plus or minus 8 /00 (2 sigma ) because the observed variations of isotope ratios follow a mass dependent fractionation law. Variations of delta D of the aqueous fluids range over sog,a 330(90; 2 sigma ) to +1200(90) 0/00 for Monahans and delta 300(96) 0/00 to +90(98)0/00 for Zag. Delta O-17 of aqueous fluids range over delta 16(22) 0/00 to +18(10) 0/00 for Monahans and +3(10) 0/00 to +27(11) 0/00 for Zag. These variations are larger than the reproducibility of standard analyses and suggest that isotope equilibria were under way in the fluids before trapping into halite. The mean values of delta D and Delta O-17 are +290 0/00 and +9 0/00, respectively. The mean values and the variations of these fluids are different from the representative values of ordinary chondrites, verifying our working hypothesis that the fluid inclusion-bearing halites were not indigenous to the H chondrite parent-asteroid but rather represent exogenous material delivered onto the asteroid from a separate cryovolcanically-active body. This initial isotopic work has demonstrated the feasibility of the measurements, but also revealed sample processing and analytical shortcomings that are now being addressed. Examination of solid mineral inclusions within Monahans and Zag halite grains by confocal Raman spectroscopy at the Carnegie Geophysical Laboratory has revealed them to be metal, magnetite, forsteritic olivine (Fo.98), macromolecular carbon (MMC), pyroxenes, feldspar with Raman spectral affinity to anorthoclase and, probably, fine-grained lepidocrocite (FeO(OH)). In addition, one inclusion features aliphatic material with Raman spectral features consistent with a mixture of short-chain aliphatic compounds. We have initiated analyses of the bulk composition of the fluids within the inclusions in Zag and Monahans halites at Virginia Tech by LA ICPMS using angilent 7500ce quadrupole ICPMS and a Lambda Physik GeoLas 193 nm excimer laser ablation system. Preliminary results reveal that the inclusion aqueous fluids contain highly charged cations of Ca, Mg and Fe. The minerals and compounds discovered thus far within Monahans/Zag halites are indicative of an originating body at least partly composed of unequilibrated anhydrous materials (high Fo olivine, pyroxenes, feldspars, possibly the metal) which were subjected to aqueous alteration (the halite parent brine) and containing a light organic component (the short-chain aliphatic compounds). This material was ejected from the originating body with little or no disruption, as evidenced with the presence of fluid inclusions. An actively geysering body similar to modern Enceladus (Postberg et al., 2011) may be a reasonable analogue in this respect. Also, the originating body should have been within close proximity to the H chondrite parent in order to generate the number of halite grains seen in Monahans and Zag. Other candidates for Monahans/Zag halite parent bodie(s) may include a young Ceres with its possible liquid ocean, or Main Belt comets

    The Patricia Zn–Pb–Ag epithermal ore deposit: An uncommon type of mineralization in northeastern Chile

    Get PDF
    The Patricia ore deposit represents an unusual example of economic Zn–Pb–Ag mineralization at the northernmost end of the Late Eocene–Oligocene metallogenic belt in Chile. It is hosted by volcano-sedimentary units, which are typically tuffaceous and andesitic breccias. The ore body consists of a set of subvertical E-W vein systems developed under a sinistral strike-slip regime that included transtensive domains with generalized extensional structures where the ores were deposited. The deposit is divided into two blocks by a set of NNW-ESE-trending reverse faults, which uplifted the eastern block and exhumed thicker and deeper parts of the deposit. At least 200 m of volcano-sedimentary pile hosting the mineralization has been eroded in this block. By contrast, the western block exposes a shallower part of the system where cherts, amorphous silica and jasperoids occur. Three main stages of mineralization have been defined: (1) pre-ore stage is characterized by early quartz, pyrite and arsenopyrite, (2) base-metal and silver stage; characterized by sphalerite (6 to 15 mol% FeS), galena, chalcopyrite, pyrrhotite and Ag-bearing minerals (freibergite, polybasite, stephanite, pyrargyrite, freieslebenite and acanthite) and (3) post-ore stage; characterized by late quartz, kutnohorite and minor sulfides (arsenopyrite, sphalerite, pyrite, galena, Ag-bearing minerals and Pb-sulfosalts). Whole-ore geochemistry shows two groups of elements that are positively correlated; 1) Ag–Cd–Cu–Pb–Zn related to the base metal sulfides and 2) Au–As–Ge–Sb–W related to arsenopyrite and pyrite. Hydrothermal alteration is pervasive in the outcropping mineralized areas, including silicification and locally, vuggy silica textures. At depth, chloritic and sericitic alteration is developed along vein selvages and is superimposed to the regional propylitic alteration. Fluid inclusions indicate that the base-metal ores were deposited from 250 to 150 °C moderate salinity fluids (1–9 wt.% NaCl). The pre-ore stage is characterized by a saline fluid (6–22 wt.% NaCl) and between 210 and 250 °C whereas the post-ore stage has salinity of 4–8 wt.% and temperature from 175 to 215 °C. Cooling was the mechanism of ore mineral precipitation in the Patricia deposit, although mixing of fluids could have occurred in the pre-ore stage. Mineralogical, geochemical and fluid inclusion evidence is consistent with an intermediate sulfidation (IS) epithermal deposit type. This study highlights the high potential for hidden economic mineralization at depth in the western block and for extension of the ore body both to the south and to deeper levels in the eastern block of the Patricia ore deposit. To a larger extent, the implications of finding such polymetallic epithermal style of mineralization in the northern Chile Precordillera is relevant both to the regional metallogenic perspective and to the exploration potential of the region, where the late Eocene–early Oligocene metallogenic belt apparently disappears.This research was financially supported by the project CGL2010 – 17668 (Ministerio de Economía y Competitividad of Spain) and the company Herencia Resources Plc.Peer reviewe

    Organic Compounds in Early Solar System Aqueous Fluids

    Get PDF
    thermally-metamorphosed ordinary chondrite regolith breccias (Monahans 1998, hereafter simply Monahans ( 5) and Zag (H3-6)) contain fluid inclusion-bearing halite (NaCl) crystals dated to be ~4.5 billion years old. Thus, compositional data on fluid inclusions in these halites will reveal unique information regarding the origin and activity of aqueous fluids in the early solar system, and especially their interactions with organic mate- rial. Our initial analyses of solid inclusions in Monahans halite has shown the presence of olivine, high- and low- Ca pyroxene, feldspars, magnetite, sulfides, phyllosilicates, zeolites, metal, phosphates and abundant organics. We age of carbon, carbonates and organics in these residues, and low but significant amino acids concentrations in Monahans and Zag halite

    The CO2 content of primitive bubble-bearing island-arc melt inclusions: a comparative study of Raman-spectroscopy of melt inclusion bubbles, mass-balance calculations and experimental homogenization of melt inclusions

    Get PDF
    In the interest of constraining the volatile budgets of the Earth's interior, melt inclusions are a valuable tool because they provide a geologically persistent record of melt volatile contents before they degas to the atmosphere during volcanic eruptions. However, melt inclusions require special care because of the possibility for volatile elements to diffuse from the glass into a separate fluid phase (bubble; e.g. CO2) or out of the olivine host (e.g. H2O)..
    • …
    corecore