430 research outputs found
Extensive palaeo-surfaces beneath the EvansâRutford region of the West Antarctic Ice Sheet control modern and past ice flow
The subglacial landscape of Antarctica records and influences the behaviour of its overlying ice sheet. However, in many places, the evolution of the landscape and its control on ice sheet behaviour have not been investigated in detail. Using recently released radio-echo sounding data, we investigate the subglacial landscape of the EvansâRutford region of West Antarctica. Following quantitative analysis of the landscape morphology under ice-loaded and ice-unloaded conditions, we identify 10 flat surfaces distributed across the region. Across these 10 surfaces, we identify two distinct populations based on clustering of elevations, which potentially represent remnants of regionally coherent pre-glacial surfaces underlying the West Antarctic Ice Sheet (WAIS). The surfaces are bounded by deeply incised glacial troughs, some of which have potential tectonic controls. We assess two hypotheses for the evolution of the regional landscape: (1) passive-margin evolution associated with the break-up of the Gondwana supercontinent or (2) an extensive planation surface that may have been uplifted in association with either the West Antarctic Rift System or cessation of subduction at the base of the Antarctic Peninsula. We suggest that passive-margin evolution is the most likely of these two mechanisms, with the erosion of glacial troughs adjacent to, and incising, the flat surfaces likely having coincided with the growth of the WAIS. These flat surfaces also demonstrate similarities to other identified surfaces, indicating that a similar formational process may have been acting more widely around the Weddell Sea embayment. The subsequent fluctuations of ice flow, basal thermal regime, and erosion patterns of the WAIS are therefore controlled by the regional tectonic structures
Turbulent Scalar Mixing in a Skewed Jet in Crossflow: Experiments and Modeling
Turbulent mixing of an inclined, skewed jet injected into a crossflow is investigated using MRI-based experiments and a high-fidelity LES of the same configuration. The MRI technique provides three-dimensional fields of mean velocity and mean jet concentration. The 30° skew of the jet relative to the crossflow produces a single dominant vortex which introduces spanwise asymmetries to the velocity and concentration fields. The turbulent scalar transport of the skewed jet is investigated in further detail using the LES, which is validated against the experimental measurements. Mixing is found to be highly anisotropic throughout the jet region. Isotropic turbulent diffusivity and viscosity are used to calculate an optimal value of the turbulent Schmidt number, which varies widely over the jet region and lies mostly outside of the typically accepted range 0.7 †Sct †0.9. Finally, three common scalar flux models of increasing complexity are evaluated based on their ability to capture the anisotropy and predict the scalar concentration field of the present configuration. The higher order models are shown to better represent the turbulent scalar flux vector, leading to more accurate calculations of the concentration field. While more complex models are better able to capture the turbulent mixing, optimization of model constants is shown to significantly affect the results
Differential roles of p39MosâXp42Mpk1 cascade proteins on Raf1 phosphorylation and spindle morphogenesis in Xenopus oocytes
AbstractFully-grown G2-arrested Xenopus oocytes resume meiosis upon hormonal stimulation. Resumption of meiosis is characterized by germinal vesicle breakdown, chromosome condensation, and organization of a bipolar spindle. These cytological events are accompanied by activation of MPF and the p39MosâMEK1âXp42Mpk1âp90Rsk pathways. The latter cascade is activated upon p39Mos accumulation. Using U0126, a MEK1 inhibitor, and p39Mos antisense morpholino and phosphorothioate oligonucleotides, we have investigated the role of the members of the p39MosâMEK1âXp42Mpk1âp90Rsk in spindle morphogenesis. First, we have observed at a molecular level that prevention of p39Mos accumulation always led to MEK1 phosphorylation defects, even when meiosis was stimulated through the insulin Ras-dependent pathway. Moreover, we have observed that Raf1 phosphorylation that occurs during meiosis resumption was dependent upon the activity of MEK1 or Xp42Mpk1 but not p90Rsk. Second, inhibition of either p39Mos accumulation or MEK1 inhibition led to the formation of a cytoplasmic aster-like structure that was associated with condensed chromosomes. Spindle morphogenesis rescue experiments using constitutively active Rsk and purified murine Mos protein suggested that p39Mos or p90Rsk alone failed to promote meiotic spindle organization. Our results indicate that activation of the p39MosâMEK1âXp42Mpk1âp90Rsk pathway is required for bipolar organization of the meiotic spindle at the cortex
Necessary Optimality Conditions for a Dead Oil Isotherm Optimal Control Problem
We study a system of nonlinear partial differential equations resulting from
the traditional modelling of oil engineering within the framework of the
mechanics of a continuous medium. Recent results on the problem provide
existence, uniqueness and regularity of the optimal solution. Here we obtain
the first necessary optimality conditions.Comment: 9 page
Operating an atom interferometer beyond its linear range
In this paper, we show that an atom interferometer inertial sensor, when
associated to the auxiliary measurement of external vibrations, can be operated
beyond its linear range and still keep a high acceleration sensitivity. We
propose and compare two measurement procedures (fringe fitting and nonlinear
lock) that can be used to extract the mean phase of the interferometer when the
interferometer phase fluctuations exceed . Despite operating in the urban
environment of inner Paris without any vibration isolation, the use of a low
noise seismometer for the measurement of ground vibrations allows our atom
gravimeter to reach at night a sensitivity as good as g at 1
s. Robustness of the measurement to large vibration noise is also demonstrated
by the ability of our gravimeter to operate during an earthquake with excellent
sensitivity. Our high repetition rate allows for recovering the true low
frequency seismic vibrations, ensuring proper averaging. Such techniques open
new perspectives for applications in other fields, such as navigation and
geophysics.Comment: 20 pages, 8 figure
Comparison between two mobile absolute gravimeters: optical versus atomic interferometers
We report a comparison between two absolute gravimeters: the LNE-SYRTE cold
atoms gravimeter and FG5#220 of Leibniz Universit\"at of Hannover. They rely on
different principles of operation: atomic and optical interferometry. Both are
movable which enabled them to participated to the last International Comparison
of Absolute Gravimeters (ICAG'09) at BIPM. Immediately after, their bilateral
comparison took place in the LNE watt balance laboratory and showed an
agreement of 4.3 +/- 6.4 {\mu}Gal
- âŠ