55 research outputs found

    Blood-brain- barrier co-culture models to study nanoparticle penetration : focus on co-culture systems

    Get PDF
    The blood-brain barrier, as a physical, active transport and metabolic barrier represents the main obstacle in the treatment of central nervous system diseases. The field of nanoparticle delivery systems is rapidly developing and nanocarriers seem to be promising for drug delivery or targeting to the brain. For testing the toxicity, uptake and transcellular transport of nanoparticles culture models of the blood-brain barrier are widely used, including immortalized brain endothelial cell lines, primary brain endothelial cells in static or dynamic culture conditions, and in co-culture systems with glial cells and/or pericytes. This mini-review gives a brief summary of blood-brain barrier co-culture models that were used for testing nanocarriers, the types of different nanoparticle systems that were examined on blood-brain barrier models, and the advantages, limitations and suitability of the blood-brain barrier models for nanoparticle penetration studies

    CELL CULTURE AND IN VIVO STUDY OF MICROVESICLES FOR DRUG DELIVERY ACROSS BARRIERS

    Get PDF
    Efficient drug delivery across biological barriers, like the intestinal and blood-brain barriers is a central problem in pharmaceutical treatment of disorders [1]. Most pharmaceutical drug candidates, hydrophilic molecules, biopharmaceuticals, and efflux transporter ligands have a low permeability across barriers. To solve this unmet therapeutical need colloidal drug delivery systems utilizing physiological transporters of the barriers hold a great promise. The aim of our study was to test nanosized, biocompatible and biodegradable vesicles which can encorporate both hydrophilic and hydrophobic drug cargos and present on their surfaces ligands for solute carrier (SLC) proteins. Glucose analogues and amino acids were used to achieve increased specificity and efficacy for drug delivery across barriers. Bilayered microvesicles of non-ionic surfactants, niosomes are able to encapsulate solutes and serve as potential drug carriers. Niosomes with an average hydrodynamical size of 200 nm were prepared containing different ligands and their combinbations, and Evans blue-albumin as a model molecule. Human Caco-2 intestinal epithelial and D3 brain endothelial cells, a model of the blood-brain barrier [2], were used for toxicity measurements by colorimetric methods and real-time cell microelectric sensing, permeability experiments and morphological examinations. The presence of glucose and amino acid ligands on microvesicles increased the uptake of Evans blue-albumin to the cells and its penetration across the cell layers. A kinetic in vivo study in nude mice by eXplore Optix, a near infrared fluorescence time-domain optical imaging demonstrated the elevated accumulation of Evans blue-albumin in the brain after the intravenous injection of glucose analogue and amino acid labeled niosomes. These results indicate that microvesicles labeled with SLC transporter ligands can be used for targeting hydrophilic biomolecules across barriers

    Simvastatin, edaravone and dexamethasone protect against kainate-induced brain endothelial cell damage

    Get PDF
    Excitotoxicity is a central pathological pathway in many neurological diseases with blood-brain barrier (BBB) dysfunction. Kainate, an exogenous excitotoxin, induces epilepsy and BBB damage in animal models, but the direct effect of kainate on brain endothelial cells has not been studied in detail. Our aim was to examine the direct effects of kainate on cultured cells of the BBB and to test three anti-inflammatory and antioxidant drugs used in clinical practice, simvastatin, edaravone and dexamethasone, to protect against kainate-induced changes.Primary rat brain endothelial cell, pericyte and astroglia cultures were used to study cell viability by impedance measurement. BBB permeability was measured on a model made from the co-culture of the three cell types. The production of nitrogen monoxide and reactive oxygen species was followed by fluorescent probes. The mRNA expression of kainate receptors and nitric oxide synthases were studied by PCR.Kainate damaged brain endothelial cells and made the immunostaining of junctional proteins claudin-5 and zonula occludens-1 discontinuous at the cell border indicating the opening of the barrier. The permeability of the BBB model for marker molecules fluorescein and albumin and the production of nitric oxide in brain endothelial cells were increased by kainate. Simvastatin, edaravone and dexamethasone protected against the reduced cell viability, increased permeability and the morphological changes in cellular junctions caused by kainate. Dexamethasone attenuated the elevated nitric oxide production and decreased the inducible nitric oxide synthase (NOS2/iNOS) mRNA expression increased by kainate treatment.Kainate directly damaged cultured brain endothelial cells. Simvastatin, edaravone and dexamethasone protected the BBB model against kainate-induced changes. Our results confirmed the potential clinical usefulness of these drugs to attenuate BBB damage

    Cell Delivery: Routing Nanomolar Protein Cargoes to Lipid Raft-Mediated/Caveolar Endocytosis through a Ganglioside GM1-Specific Recognition Tag (Adv. Sci. 4/2020)

    Get PDF
    In article number 1902621, Tamás A. Martinek and co-workers develop a pentapeptidic tag, which reads the glycan code of ganglioside GM1 and triggers lipid raft-mediated endocytosis, avoiding lysosomal entrapment. This carrier molecule can deliver macromolecular cargoes (e.g., IgG complexes) into live cells with the possibility to escape to the cytosol.Peer reviewe

    Routing Nanomolar Protein Cargoes to Lipid Raft-Mediated/Caveolar Endocytosis through a Ganglioside GM1-Specific Recognition Tag

    Get PDF
    There is a pressing need to develop ways to deliver therapeutic macromolecules to their intracellular targets. Certain viral and bacterial proteins are readily internalized in functional form through lipid raft-mediated/caveolar endocytosis, but mimicking this process with protein cargoes at therapeutically relevant concentrations is a great challenge. Targeting ganglioside GM1 in the caveolar pits triggers endocytosis. A pentapeptide sequence WYKYW is presented, which specifically captures the glycan moiety of GM1 (K-D = 24 nm). The WYKYW-tag facilitates the GM1-dependent endocytosis of proteins in which the cargo-loaded caveosomes do not fuse with lysosomes. A structurally intact immunoglobulin G complex (580 kDa) is successfully delivered into live HeLa cells at extracellular concentrations ranging from 20 to 160 nm, and escape of the cargo proteins to the cytosol is observed. The short peptidic WYKYW-tag is an advantageous endocytosis routing sequence for lipid raft-mediated/caveolar cell delivery of therapeutic macromolecules, especially for cancer cells that overexpress GM1.Peer reviewe

    Edaravone protects against methylglyoxal-induced barrier damage in human brain endothelial cells

    Get PDF
    BACKGROUND: Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line) treated with methylglyoxal. METHODOLOGY: Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging. PRINCIPAL FINDINGS: Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM) provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound. CONCLUSION: These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases
    corecore