173 research outputs found

    Some like it hot... : the evolution and genetics of temperature dependent body size in Drosophila melanogaster

    Get PDF
    Body size is one of the most obvious and most important characteristic of any organism. A thorough understanding of how and why a certain individual obtains a specific body size, given its evolutionary history and ecological context, is a fundamental question in biology. One special case of variation in size is clinal variation: individuals of the same species indigenous to higher latitudes are on average larger than their conspecifics inhabiting regions at lower latitudes (closer to the equator). This pattern has a genetic basis, is very common in many animal species and represents a long-standing puzzle in evolutionary biology. Drosophila melanogaster populations from temperate and tropical regions were known to produce the clinal variation in body size, very likely as a result of adaptation to the different climates. Aim of this study was to understand the evolution of this genetic difference in average body size between populations adapted to low and high temperatures. Analyses of correlated life-history traits, interaction of selection pressures, biochemistry of resource allocation and global gene expression resulted in formulating the following scenario. We suggest that geographical variation of adult body size in Drosophila melanogaster is plausibly the result of thermal evolution of a genetic trade-off between adult size and larval survival. Because a cold environment seems to select for a large adult body and a warm environment seems to select for increased larval vigor to resist challenges to pre-adult survival, alternative resource allocation strategies have evolved. Cold adapted genotypes seem to invest glycogen reserves preferentially in growth while warm adapted genotypes seem to invest their glycogen reserves preferentially in larval survival. The physiological basis of these alternative strategies is plausibly variation in the utilization of glycogen induced by variation in glycogen processing enzyme activities. A large fraction of the genes found to be differentially expressed across genotypes with different body size are involved in cell growth and maintenance. This suggests that the actual molecular determinants of the divergence in cellular metabolism and body size might be effectors and regulators of cell growth and differentiation through variation in the activity of signal transduction pathways. Thus, the real difference between individuals from different geographical populations seems to be not a quantitative but a qualitative one. Warm and cold adapted genotypes are fundamentally different in their cellular metabolism and physiology. This underlying divergence allows them to exhibit alternative resource allocation strategies that result in adaptive life-historie

    Genome-Wide Prediction of Functional Gene-Gene Interactions Inferred from Patterns of Genetic Differentiation in Mice and Men.

    Get PDF
    The human genome encodes a limited number of genes yet contributes to individual differences in a vast array of heritable traits. A possible explanation for the capacity our genome to generate this virtually unlimited range of phenotypic variation in complex traits is to assume functional interactions between genes. Therefore we searched two mammalian genomes to identify potential epistatic interactions by looking for co-adapted genes marked by excess two-locus genetic differentiation between populations/lineages using publicly available SNP genotype data. The practical motivation for this effort is to reduce the number of pair-wise tests that need to be performed in genome-wide association studies aimed at detecting GxG interactions, by focusing on pairs predicted to be more likely to jointly affect variation in complex traits. Hence, this approach generates a list of candidate interactions that can be empirically tested. In both the mouse and human data we observed two-locus genetic differentiation in excess of what can be expected from chance alone based on simulations. In an attempt to validate our hypothesis that pairs of genes showing excess genetic divergence represent potential functional interactions, we selected a small set of gene combinations postulated to be interacting based on our analyses and looked for a combined effect of the selected genes on variation in complex traits in both mice and man. In both cases the individual effect of the genes were not significant, instead we observed marginally significant interaction effects. These results show that genome wide searches for gene-gene interactions based on population genetic data are feasible and can generate interesting candidate gene pairs to be further tested for their contribution to phenotypic variation in complex traits

    Genetic Variation at Selected SNPs in the Leptin Gene and Association of Alleles with Markers of Kidney Disease in a Xhosa Population of South Africa

    Get PDF
    BACKGROUND: Chronic kidney disease (CKD) is a significant public health problem that leads to end-stage renal disease (ESRD) with as many as 2 million people predicted to need therapy worldwide by 2010. Obesity is a risk factor for CKD and leptin, the obesity hormone, correlates with body fat mass and markers of renal function. A number of clinical and experimental studies have suggested a link between serum leptin and kidney disease. We hypothesised that variants in the leptin gene (LEP) may be associated with markers of CKD in indigenous black Africans. METHODOLOGY/PRINCIPAL FINDINGS: Black South Africans of Xhosa (distinct cultural Bantu-speaking population) descent were recruited for the study and four common polymorphisms of the LEP (rs7799039, rs791620, rs2167270 and STS-U43653 [ENSSNP5824596]) were analysed for genotype and haplotype association with urine albumin-to-creatinine ratio (UACR), estimated glomerular filtration rate (eGFR), Serum creatinine (Scr) and serum leptin level. In one of the four single nucleotide polymorphisms (SNPs) we examined, an association with the renal phenotypes was observed. Hypertensive subjects with the T allele (CT genotype) of the ENSSNP5824596 SNP had a significantly higher eGFR (p = 0.0141), and significantly lower Scr (p = 0.0137). This was confirmed by haplotype analysis. Also, the haplotype GAAC had a modest effect on urine albumin-to-creatinine ratio in normotensive subjects (p = 0.0482). CONCLUSIONS/SIGNIFICANCE: These results suggest that genetic variations of the LEP may be associated with phenotypes that are markers of CKD in black Africans

    PCLO rs2522833 impacts HPA system activity in healthy young adults

    Get PDF
    Recent genetic studies showed evidence for a role of the single-nucleotide polymorphism rs2522833 within the PCLO gene in the etiology of major depression, and rs2522833 has been shown to modulate hypothalamic pituitary adrenal (HPA) axis activity during antidepressant treatment. Monoaminergic modulation of the HPA system may be one possible pathomechanism by which PCLO exerts its effect on depression. In the present study, we investigated the effect of rs2522833 on the cortisol awakening response (CAR) in healthy young adults. A total of 66 healthy volunteers from the community (36 men and 30 women) aged 18–25 years without individual or family history of affective disorders and schizophrenia collected saliva cortisol samples at 0, 30, 45 and 60 min after awakening on two consecutive working days. We identified a blunted CAR (AUCinc) in rs2522833 risk-allele (C) carriers, possibly indicating exhausted regulatory mechanisms underlying the HPA system. We also identified higher neuroticism scores in rs2522833 risk-allele carriers but no phenotypic correlation between the CAR (AUCinc) and neuroticism. These findings suggest that the rs2522833 risk variant might increase vulnerability to depression both by physiological and behavioral pathways, which appear, however, not to be substantially overlapped. Replication with larger samples is warranted

    Comprehensive mRNA Expression Profiling Distinguishes Tauopathies and Identifies Shared Molecular Pathways

    Get PDF
    Background: Understanding the aetiologies of neurodegenerative diseases such as Alzheimer's disease (AD), Pick's disease (PiD), Progressive Supranuclear Palsy (PSP) and Frontotemporal dementia (FTD) is often hampered by the considerable clinical and molecular overlap between these diseases and normal ageing. The development of high throughput genomic technologies such as microarrays provide a new molecular tool to gain insight in the complexity and relationships between diseases, as they provide data on the simultaneous activity of multiple genes, gene networks and cellular pathways. Methodology/Principal Findings: We have constructed genome wide expression profiles from snap frozen post-mortem tissue from the medial temporal lobe of patients with four neurodegenerative disorders (5 AD, 5 PSP, 5 PiD and 5 FTD patients) and 5 control subjects. All patients were matched for age, gender, ApoE-e and MAPT (tau) haplotype. From all groups a total of 790 probes were shown to be differently expressed when compared to control individuals. The results from these experiments were then used to investigate the correlations between clinical, pathological and molecular findings. From the 790 identified probes we extracted a gene set of 166 probes whose expression could discriminate between these disorders and normal ageing. Conclusions/Significance: From genome wide expression profiles we extracted a gene set of 166 probes whose expression could discriminate between neurological disorders and normal ageing. This gene set can be further developed into an accurate microarray-based classification test. Furthermore, from this dataset we extracted a disease specific set of genes and identified two aging related transcription factors (FOXO1A and FOXO3A) as possible drug targets related to neurodegenerative disease

    Resequencing three candidate genes for major depressive disorder in a Dutch cohort

    Get PDF
    Major depressive disorder (MDD) is a psychiatric disorder, characterized by periods of low mood of more than two weeks, loss of interest in normally enjoyable activities and behavioral changes. MDD is a complex disorder and does not have a single genetic cause. In 2009 a genome wide association study (GWAS) was performed on the Dutch GAIN-MDD cohort. Many of the top signals of this GWAS mapped to a region spanning the gene PCLO, and the non-synonymous coding single nucleotide polymorphism (SNP) rs2522833 in the PCLO gene became genome wide significant after post-hoc analysis. We performed resequencing of PCLO, GRM7, and SLC6A4 in 50 control samples from the GAIN-MDD cohort, to detect new genomic variants. Subsequently, we genotyped these variants in the entire GAIN-MDD cohort and performed association analysis to investigate if rs2522833 is the causal variant or simply in linkage disequilibrium with a more associated variant. GRM7 and SLC6A4 are both candidate genes for MDD from literature. We aimed to gather more evidence that rs2522833 is indeed the causal variant in the GAIN-MDD cohort or to find a previously undetected common variant in either PCLO, GRM7, or SLC6A4 with a higher association in this cohort. After next generation sequencing and association analysis we excluded the possibility of an undetected common variant to be more associated. For neither PCLO nor GRM7 we found a more associated variant. For SLC6A4, we found a new SNP that showed a lower P-value (P = 0.07) than in the GAIN-MDD GWAS (P = 0.09). However, no evidence for genome-wide significance was found. Although we did not take into account rare variants, we conclude that our results provide further support for the hypothesis that the non-synonymous coding SNP rs2522833 in the PCLO gene is indeed likely to be the causal variant in the GAIN-MDD cohort

    Genotype-by-Environment Interactions and Adaptation to Local Temperature Affect Immunity and Fecundity in Drosophila melanogaster

    Get PDF
    Natural populations of most organisms harbor substantial genetic variation for resistance to infection. The continued existence of such variation is unexpected under simple evolutionary models that either posit direct and continuous natural selection on the immune system or an evolved life history “balance” between immunity and other fitness traits in a constant environment. However, both local adaptation to heterogeneous environments and genotype-by-environment interactions can maintain genetic variation in a species. In this study, we test Drosophila melanogaster genotypes sampled from tropical Africa, temperate northeastern North America, and semi-tropical southeastern North America for resistance to bacterial infection and fecundity at three different environmental temperatures. Environmental temperature had absolute effects on all traits, but there were also marked genotype-by-environment interactions that may limit the global efficiency of natural selection on both traits. African flies performed more poorly than North American flies in both immunity and fecundity at the lowest temperature, but not at the higher temperatures, suggesting that the African population is maladapted to low temperature. In contrast, there was no evidence for clinal variation driven by thermal adaptation within North America for either trait. Resistance to infection and reproductive success were generally uncorrelated across genotypes, so this study finds no evidence for a fitness tradeoff between immunity and fecundity under the conditions tested. Both local adaptation to geographically heterogeneous environments and genotype-by-environment interactions may explain the persistence of genetic variation for resistance to infection in natural populations

    FAM-MDR: A Flexible Family-Based Multifactor Dimensionality Reduction Technique to Detect Epistasis Using Related Individuals

    Get PDF
    We propose a novel multifactor dimensionality reduction method for epistasis detection in small or extended pedigrees, FAM-MDR. It combines features of the Genome-wide Rapid Association using Mixed Model And Regression approach (GRAMMAR) with Model-Based MDR (MB-MDR). We focus on continuous traits, although the method is general and can be used for outcomes of any type, including binary and censored traits. When comparing FAM-MDR with Pedigree-based Generalized MDR (PGMDR), which is a generalization of Multifactor Dimensionality Reduction (MDR) to continuous traits and related individuals, FAM-MDR was found to outperform PGMDR in terms of power, in most of the considered simulated scenarios. Additional simulations revealed that PGMDR does not appropriately deal with multiple testing and consequently gives rise to overly optimistic results. FAM-MDR adequately deals with multiple testing in epistasis screens and is in contrast rather conservative, by construction. Furthermore, simulations show that correcting for lower order (main) effects is of utmost importance when claiming epistasis. As Type 2 Diabetes Mellitus (T2DM) is a complex phenotype likely influenced by gene-gene interactions, we applied FAM-MDR to examine data on glucose area-under-the-curve (GAUC), an endophenotype of T2DM for which multiple independent genetic associations have been observed, in the Amish Family Diabetes Study (AFDS). This application reveals that FAM-MDR makes more efficient use of the available data than PGMDR and can deal with multi-generational pedigrees more easily. In conclusion, we have validated FAM-MDR and compared it to PGMDR, the current state-of-the-art MDR method for family data, using both simulations and a practical dataset. FAM-MDR is found to outperform PGMDR in that it handles the multiple testing issue more correctly, has increased power, and efficiently uses all available information

    Do consanguineous parents of a child affected by an autosomal recessive disease have more DNA identical-by-descent than similarly-related parents with healthy offspring? Design of a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The offspring of consanguineous relations have an increased risk of congenital/genetic disorders and early mortality. Consanguineous couples and their offspring account for approximately 10% of the global population. The increased risk for congenital/genetic disorders is most marked for autosomal recessive disorders and depends on the degree of relatedness of the parents. For children of first cousins the increased risk is 2-4%. For individual couples, however, the extra risk can vary from zero to 25% or higher, with only a minority of these couples having an increased risk of at least 25%. It is currently not possible to differentiate between high-and low-risk couples. The quantity of DNA identical-by-descent between couples with the same degree of relatedness shows a remarkable variation. Here we hypothesize that consanguineous partners with children affected by an autosomal recessive disease have more DNA identical-by-descent than similarly-related partners who have only healthy children. The aim of the study is thus to establish whether the amount of DNA identical-by-descent in consanguineous parents of children with an autosomal recessive disease is indeed different from its proportion in consanguineous parents who have healthy children only.</p> <p>Methods/Design</p> <p>This project is designed as a case-control study. Cases are defined as consanguineous couples with one or more children with an autosomal recessive disorder and controls as consanguineous couples with at least three healthy children and no affected child. We aim to include 100 case couples and 100 control couples. Control couples are matched by restricting the search to the same family, clan or ethnic origin as the case couple. Genome-wide SNP arrays will be used to test our hypothesis.</p> <p>Discussion</p> <p>This study contains a new approach to risk assessment in consanguineous couples. There is no previous study on the amount of DNA identical-by-descent in consanguineous parents of affected children compared to the consanguineous parents of healthy children. If our hypothesis proves to be correct, further studies are needed to obtain different risk figure estimates for the different proportions of DNA identical-by-descent. With more precise information about their risk status, empowerment of couples can be improved when making reproductive decisions.</p
    corecore