577 research outputs found

    New Zealand contributions to the global earthquake model’s earthquake consequences database (GEMECD)

    Get PDF
    The Global Earthquake Model’s (GEM) Earthquake Consequences Database (GEMECD) aims to develop, for the first time, a standardised framework for collecting and collating geocoded consequence data induced by primary and secondary seismic hazards to different types of buildings, critical facilities, infrastructure and population, and relate this data to estimated ground motion intensity via the USGS ShakeMap Atlas. New Zealand is a partner of the GEMECD consortium and to-date has contributed with 7 events to the database, of which 4 are localised in the South Pacific area (Newcastle 1989; Luzon 1990; South of Java 2006 and Samoa Islands 2009) and 3 are NZ-specific events (Edgecumbe 1987; Darfield 2010 and Christchurch 2011). This contribution to GEMECD represented a unique opportunity for collating, comparing and reviewing existing damage datasets and harmonising them into a common, openly accessible and standardised database, from where the seismic performance of New Zealand buildings can be comparatively assessed. This paper firstly provides an overview of the GEMECD database structure, including taxonomies and guidelines to collect and report on earthquake-induced consequence data. Secondly, the paper presents a summary of the studies implemented for the 7 events, with particular focus on the Darfield (2010) and Christchurch (2011) earthquakes. Finally, examples of specific outcomes and potentials for NZ from using and processing GEMECD are presented, including: 1) the rationale for adopting the GEM taxonomy in NZ and any need for introducing NZ-specific attributes; 2) a complete overview of the building typological distribution in the Christchurch CBD prior to the Canterbury earthquakes and 3) some initial correlations between the level and extent of earthquake-induced physical damage to buildings, building safety/accessibility issues and the induced human casualtie

    Unraveling the Effect of Carbon Nanotube Oxidation on Solid-State Decomposition of Ammonia Borane/Carbon Nanotube Composites

    Get PDF
    Among the routes to perform hydrogen release from ammonia in solid state, the nanoconfinement into a carbonaceous matrix or the use of carbon-supported catalysts for the thermal degradation of ammonia borane (AB) is the most interesting one. Oxidized carbon nanotubes (CNTs) represent a suitable choice for preparing AB mixtures or for anchoring catalysts for dehydrogenation. Nevertheless, literature lacks detailed study about the influence of CNT oxidation degree on the AB degradation/hydrogen release. In this study, we first described in a comprehensive way that the thermal degradation of AB mixed with CNTs by varying the CNT oxidation degree enlightens the degradative routes mainly active in each case. Using highly oxidized CNTs, we observed a decrement of activation energy of the degradative process up to around 53% and the activation/suppression of different pathways based on the amount of oxygen functionalities present in the mixtures. Furthermore, the presence of oxidized CNTs modulated the solid-state reactivity of AB reducing the release of nitrogen/boron species together with hydrogen. These findings lead the way for the design of new hydrogen storage materials

    Highly Dispersed Few-Nanometer Chlorine-Doped SnO2 Catalyst Embedded in a Polyaniline Matrix for Stable HCOO– Production in a Flow Cell

    Get PDF
    With the spread of alternative energy plants, electrolysis processes are becoming the protagonists of the future industrial generation. The technology readiness level for the electrochemical reduction of carbon dioxide is still low and is largely based on precious metal resources. In the present work, tin ions are anchored on a polyaniline matrix, via a sonochemical synthesis, forming a few atomic layers of chlorine-doped SnO2 with a total loading of tin atom load of only 7 wt %. This catalyst is able to produce formate (HCOO-) with great selectivity, exceeding 72% of Faradaic efficiency in the first hour of testing in 1 M KHCO3 electrolyte, with a current density of more than 50 mA cm-2 in a 2 M KHCO3 electrolyte flow cell setup. Catalyst stability tests show a stable production of HCOO- during 6 h of measurement, accumulating an overall TONHCOO- of more than 10,000 after 16 h of continuous formate production. This strategy is competitive in drastically reducing the amount of metal required for the overall catalysis

    Sea Level Changes Affect Seismicity Rates in a Hydrothermal System Near Istanbul

    Get PDF
    Small stress changes such as those from sea level fluctuations can be large enough to trigger earthquakes. If small and large earthquakes initiate similarly, high-resolution catalogs with low detection thresholds are best suited to illuminate such processes. Below the Sea of Marmara section of the North Anatolian Fault, a segment of urn:x-wiley:00948276:media:grl65397:grl65397-math-0001150 km is late in its seismic cycle. We generated high-resolution seismicity catalogs for a hydrothermal region in the eastern Sea of Marmara employing AI-based and template matching techniques to investigate the link between sea level fluctuations and seismicity over 6 months. All high resolution catalogs show that local seismicity rates are larger during time periods shortly after local minima of sea level, when it is already rising. Local strainmeters indicate that seismicity is promoted when the ratio of differential to areal strain is the largest. The strain changes from sea level variations, on the order of 30–300 nstrain, are sufficient to promote seismicity

    Inkjet printed doped polyaniline: navigating through physics and chemistry for the next generation devices

    Get PDF
    Innovative benzidine-free PANI-based inks for electrically conducive inkjet printed devices were developed and tested and the results compared with those obtained by traditional PANI. NMR investigations evidenced the presence of quinones and phenolic groups on the backbone of the innovative PANIs that are thought being responsible for the higher solubility in DMSO. A mechanism of reaction was proposed. The numerous characterizations (NMR, UV-Vis, FTIR, XPS and electrical investigations) allowed to compare protonation level, doping level, valence band maximum for both the type of PANI. The correlation among structural properties, printability, conductivity and solubility was discussed

    Direct Evidence of a Slow‐Slip Transient Modulating the Spatiotemporal and Frequency‐Magnitude Earthquake Distribution: Insights From the Armutlu Peninsula, Northwestern Turkey

    Get PDF
    Earthquakes and slow‐slip events interact, however, detailed studies investigating their interplay are still limited. We generate the highest resolution microseismicity catalog to date for the northern Armutlu Peninsula in a ∌1‐year period to perform a detailed seismicity distribution analysis and correlate the results with a local, geodetically observed slow‐slip transient within the same period. Seismicity shows a transition of cluster‐type behavior from swarm‐like to burst‐like, accompanied by an increasing relative proportion of clustered (non‐Poissonian) relative to background (Poissonian) seismicity and gradually decreasing b‐value as the geodetically observed slow‐slip transient ends. The observed slow‐slip transient decay correlates with gradually increasing effective‐stress‐drop values. The observed correlation between the b‐value and geodetic transient highlights the influence of aseismic deformation on seismic deformation and the impact of slow‐slip transients on local seismic hazard

    Actuators based on intrinsic conductive polymers/carbon nanoparticles nanocompositesElectroactive Polymer Actuators and Devices (EAPAD) 2013

    Get PDF
    New polyaniline (PANi) synthesis was performed starting from non-toxic N-phenil-p-phenylenediamine (aniline dimer) using reverse addition of monomer to oxidizing agent, the synthesis allows to produce highly soluble PANi. Several types of doped PANi were prepared to be used on electromechanical active actuators. Different techniques were used to include carbon nanoparticles such as carbon nanotubes and graphene. Bimorph solid state ionic actuators were prepared with these novel nanocomposites using a variety of supporting polymer

    Aqueous phase reforming of the residual waters derived from lignin-rich hydrothermal liquefaction: investigation of representative organic compounds and actual biorefinery streams

    Get PDF
    Secondary streams in biorefineries need to be valorized to improve the economic and environmental sustainability of the plants. Representative model compounds of the water fraction from the hydrothermal liquefaction (HTL) of biomass were subjected to aqueous phase reforming (APR) to produce hydrogen. Carboxylic and bicarboxylic acids, hydroxyacids, alcohols, cycloketones and aromatics were identified as model compounds and tested for APR. The tests were performed with a Pt/C catalyst and the influence of the carbon concentration (0.3–1.8 wt. C%) was investigated. Typically, the increase of the concentration negatively affected the conversion of the feed toward gaseous products, without influencing the selectivity toward hydrogen production. A synthetic ternary mixture (glycolic acid, acetic acid, lactic acid) was subjected to APR to evaluate any differences in performance compared to the tests with single compounds. Indeed, glycolic acid reacted faster in the mixture than in the corresponding single compound test, while acetic acid remained almost unconverted. The influence of the reaction time, temperature and carbon concentration was also evaluated. Finally, residual water resulting from the HTL of a lignin-rich stream originating from an industrial-scale lignocellulosic ethanol process was tested for the first time, after a thorough characterization. In this framework, the stability of the catalyst was studied and found to be correlated to the presence of aromatics in the aqueous feedstock. For this reason, the influence of an extraction procedure for the selective removal of these compounds was explored, leading to an improvement in the APR performance

    PN_SCD1, VESICLE TRAFFICKING REGULATOR IS DEMETHYLATED AND OVEREXPRESSED IN FLORETS OF APOMICTIC PASPALUM NOTATUM GENOTYPES

    Get PDF
    Apomixis (asexual reproduction through seeds) is considered a deviation of the sexual reproductive pathway leading to the formation of clonal progenies genetically identical to the mother plant. It has been suggested that apomixis might be a consequence of epigenetic alterations, such as interspecific hybridization and polyploidization, resulting in a wide deregulation of reproductive development. Studies on epigenetic are transforming our actual idea of the structural variation and diversity that prevails at key steps of plant female gametogenesis, with deep implications for understanding the evolutionary trends that model innovation in reproductive development and adaptation. Recent results have provided evidences indicating that epigenetic mechanisms are crucial to control events that distinguish sexual from apomictic development. Therefore, the epigenetic regulation of apomixis is an attractive theory as it potentially accounts for the facultative nature of apomixis as well as the ability of apomictic to revert back to sexuality. In this work we used the Methylation-Sensitive Amplification Polymorphism (MSAP) technique to characterize floral genome cytosine methylation patterns occurring in sexual and aposporous Paspalum notatum genotypes, in order to identify epigenetically-controlled genes putatively involved in apomixis development. A partial and rather divergent methylation reprogramming was detected in apomictic genotypes. From twelve polymorphic MSAP-derived sequences, one (PN_6.6, renamed PN_SCD1) was selected due to its relevant annotation and differential representation in 454 floral transcriptome libraries of sexual and apomictic P. notatum. PN_6.6 encodes the DENN domain/WD repeat-containing protein SCD1, which interacts with RAB GTPases- and/or MAPKs to promote specialized cell division, functions in clathrin-mediated membrane transport and was defined as potential substrate receptor of CUL4 E3 ubiquitin ligases. Quantitative RT-PCR and comparative RNAseq analyses of laser microdissected nucellar cells confirmed PN_SCD1 upregulation in florets of apomictic plants and revealed that overexpression takes place just before the onset of apospory initials. Moreover, we found that several SCD1 molecular partners are upregulated in florets of P. notatum apomictic plants. Our results revealed a specific vesicle trafficking molecular pathway epigenetically modulated during apomixis. Results will be presented and critically discussed

    Large granular lymphoma in a Feline Immunodeficiency Virus-positive and Feline Leukemia Virus-negative cat

    Get PDF
    • 

    corecore