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Abstract Small stress changes such as those from sea level fluctuations can be large enough to trigger
earthquakes. If small and large earthquakes initiate similarly, high-resolution catalogs with low detection
thresholds are best suited to illuminate such processes. Below the Sea of Marmara section of the North
Anatolian Fault, a segment of ~150 km is late in its seismic cycle. We generated high-resolution seismicity
catalogs for a hydrothermal region in the eastern Sea of Marmara employing Al-based and template matching
techniques to investigate the link between sea level fluctuations and seismicity over 6 months. All high
resolution catalogs show that local seismicity rates are larger during time periods shortly after local minima
of sea level, when it is already rising. Local strainmeters indicate that seismicity is promoted when the ratio of
differential to areal strain is the largest. The strain changes from sea level variations, on the order of 30-300
nstrain, are sufficient to promote seismicity.

Plain Language Summary Quasi-periodic phenomena are a natural probe to test how the Earth's
responses to a certain stress perturbation. High-resolution catalogs with low detection thresholds may provide a
new opportunity to look for this type of earthquake triggering. A segment of 150 km below the Sea of Marmara
section of the North Anatolian Fault is late in its seismic cycle. Here, we generated high-resolution seismicity
catalogs for 6 months covering a hydrothermal region south of Istanbul in the eastern Sea of Marmara including
seismicity up to M,, 4.5. For first time in this region, we document a strong effect of the Sea of Marmara

water level changes on the local seismicity. Both high-resolution catalogs show that local seismicity rates are
significantly larger during time periods shortly after local minima on sea level, when the sea level is rising.

The available local instrumentation provided an estimate of the strain changes that were sufficient to promote
seismicity. If such small stress perturbations from sea level changes are enough to trigger seismicity, it may
suggest that the region is very close to failure.

1. Introduction

For decades the Earth's periodic phenomena such as tidal movements or seasonal effects have been studied
to investigate whether small, but predictable stress changes are sufficient to trigger regular or low-frequency
earthquakes (Obara, 2002; Tanaka et al., 2002). The response to a known forcing can provide insight into the
stress change needed to activate faults and hence the probable timing of earthquakes, and more generally to the
processes promoting earthquake initiation. Solid-Earth tides can trigger both earthquakes and tectonic tremor.
The conditions that promote tremor include elevated pore pressure and low effective normal stresses, and hence
triggering of tectonic tremor by solid-earth tides has been observed often where ambient tremor occurs, including
Nankai (Shelly et al., 2007), Cascadia (Rubinstein et al., 2008), and the creeping portion of the San Andreas Fault
(Thomas et al., 2009, van der Elst et al., 2016). Tidal triggering of earthquakes is far less common, and has been
observed in only a few places where the Earth's crust is sufficiently close to failure that small stress changes can
induce slip, including shallow thrust faults at global scale (Cochran et al., 2004) and mid-oceanic ridges such as
the East Pacific Rise (Stroup et al., 2007). An extreme case of triggered seismicity from periodic changes in the
water level comes from the Koyna and Warna hydro-electric power plants in India, where M > 5 earthquakes have
occurred following water level increase from monsoon rains (Bansal et al., 2018; Gupta, 2018). Some models
of earthquake nucleation hold that large and small earthquakes begin similarly (Beroza & Ellsworth, 1996;
Ellsworth & Beroza, 1995). If small and large earthquakes share a common nucleation process, high-resolution
earthquake catalogs should be useful to better illuminate it.
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In the last few years, fast and efficient processing of vast data volumes has been achieved with the emergence and
application of artificial intelligence (Al). Al methods are promising for addressing a number of seismological
challenges, including enhancing seismicity catalogs (e.g., Zhu & Beroza, 2019) and open new opportunities for
better capturing physical processes compared with traditional seismicity catalogs, such as the detailed imaging of
fault architecture (Ross et al., 2019) and elucidation of pathways between fluid-injection wells (Park et al., 2020).
Such catalogs provide a new opportunity to investigate earthquake triggering; however, their properties warrant
a thorough evaluation to minimize false detections and interpret the results with confidence. For that reason, it is
essential to compare and benchmark results from Al-based seismic catalogs with those obtained with traditional
catalogs and other well-established high-resolution techniques such as template matching.

The major plate bounding North Anatolian Fault in Tiirkiye splits into several segments before entering the Sea
of Marmara, where it runs within 20 km of metropolitan Istanbul (Figure 1a). That 150-km fault segment last
ruptured in a M > 7 earthquake in 1766, 256 years ago. Because the recurrence interval for M > 7 earthquakes
is approximately 250 years (Parsons, 2004), the fault is considered to be late in its seismic cycle (Bohnhoff
et al., 2013). The Armutlu Peninsula, on the southern shore of the Sea of Marmara, directly south of Istanbul, is
a hydrothermal region displaying high heat flow and abundant hot springs (Eisenlohr, 1995). The area is rich in
crustal fluids likely resulting in elevated pore pressures (Figure 1). Seismic swarms frequently occur, connected
with episodic slow-slip transients (Martinez-Garzén et al., 2019, 2021). Hydrothermal regions are frequently
observed to be sensitive to earthquake triggering, for example, following the occurrence of large local or regional
earthquakes (Aiken & Peng, 2014; Saar & Manga, 2003). Similarly, the Armutlu Peninsula is sensitive to local
stress perturbations from large earthquakes, hosting vigorous aftershock activity following the 1999 M, 7.4 Izmit
earthquake (Durand et al., 2010; Karabulut et al., 2011).

The northern portion of the Armutlu Peninsula (Figure 1) has been interpreted as a horsetail splay fault structure
associated with a major normal fault (Kinscher et al., 2013) and it may have hosted the M 6.3 normal-faulting
earthquake in 1963 (Bulut & Aktar, 2007; Pinar et al., 2003). The region also hosted the western termination of the
1999 M, 7.4 Tzmit earthquake rupture (Armijo et al., 2005). In recent years, the northern portion of the Armutlu
Peninsula displays one of the highest background seismicity rates in the Sea of Marmara (Martinez-Garzon,
Ben-Zion, et al., 2019; Wollin et al., 2018). Two slow-deformation transients, possibly related to the shallow
part of local normal faults have been observed with strainmeter recordings to occur temporally connected with
moderate M > 4 local seismic events (Martinez-Garzoén et al., 2019, 2021).

We investigated the potential link between sea level changes and seismicity in the Armutlu peninsula over a time
period of 6 months. This time period includes a complex earthquake sequence that took place in the northern
portion of the Armutlu Peninsula, with two M > 4 seismic events. The largest event, a M,, 4.5 activated an onshore
normal fault that hosted at least three periods of intense seismic activity over the following year (Bocchini,
Martinez-Garzoén, et al., 2022; Martinez-Garzon et al., 2021, see SMARTNET seismicity in Figure 1b). In this
study, we generated enhanced seismicity catalogs using both Al-based and template-matching techniques, and
compared the results with those from the standard catalogs. Both high-resolution catalogs show that local seis-
micity rates are larger during the time periods shortly after local minima in the sea level, when the sea level is
rising. This correlation is not apparent in the standard seismicity catalogs. During that time, data from the local
strainmeter BOZ1 indicates a minimum and maximum in the areal and differential strain, respectively, suggesting
that stress conditions are optimal to trigger seismicity.

2. Data and Methods

We focused on a time window spanning 183 days from 1 November 2018 to 05 May 2019, in the northern
Armutlu region (longitude 28.80-29.10, latitude 40.4—40.625) (Figure 1). The region hosted a vigorous seismic
sequence, including a M, 4.3 and a M|, 4.5 earthquakes rupturing a small normal fault. The analyzed time period
includes the most seismically active period between January 2018 and 2020 (Figure 1b).

We analyzed time series from the tidal gauge stations YLVA and MERG, located in the Armutlu Peninsula
and northern shore of the Sea of Marmara, respectively, and providing a measurement every 15 min (Figure
S2 in Supporting Information S1). The long-term records (2018-2020) show a seasonality pattern in that from
October to April, sea level displays larger and more rapid variations up to 0.8 m, while from April to September
sea level changes are smaller than 0.3 m (Figures 1b and 1c). The variation of sea level in winter is typically
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Figure 1. (a) Topography and bathymetry of the eastern Sea of Marmara region. Black rectangle frames the study area. (b) Seismicity rates from a standard catalog
(KOERI agency and SMARTNET temporary network with blue and green bars, respectively) shown in two-day bins for northern Armutlu Peninsula. (c) Relative

sea level changes from two tidal gauge stations located in Yalova and Ereglisi (magenta and black lines, respectively, see their location in Figure S2 in Supporting
Information S1). In (b) and (c) the black dashed rectangle marks the time period for which we developed here enhanced seismicity catalogs. The solid rectangle
frames the entire period analyzed. (d) Zoom of the relative sea-level changes during the time period for which we developed seismicity catalogs. Dashed blue line is a
sinusoidal function with a period of T = 6.3 days.

up to three times larger than in summer, and it is typically linked with changes in the barometric pressure and
wind forcing (Yiice & Alpar, 1997). For the time window between 1 November 2018 and 31 January 2019,
we generated three enhanced seismicity catalogs employing Al-based and template-matching techniques and
compared the results with those obtained with the standard catalogs. Venn diagrams (Figure S1 in Supporting
Information S1) illustrate the common detections between the different datasets. The relatively low number
of common events between the catalogs likely reflects that each of these catalogs is a biased representation of
the “real catalog.” The catalog derived with Al-based techniques is more effective in homogeneously sampling
the entire spatio-temporal domain, while the template matching catalogs are more appropriate for analyzing

MARTINEZ-GARZON ET AL.

3of11

85U8017 SUOWILWIOD @A 81D 8|ceolidde auy Aq peusenob a1e sejole YO ‘@SN Jo Se|nJ 0} Aeiq1T8ulUO A8|IA U (SUORIPUOD-PUE-SWB 00" A3 1M AeIq 1[eul [UO//SdNY) SUORIPUOD pue Swie 1 841 88S *[£202/S0/y2] U0 AkeiqiTauliuo A8|IM ‘ulleg eelsieAlun @eid Aq 8S2TOT 192202/620T 0T/I0pwi0o A8 M Ariq1jeutjuo'sgndnBe//:sdny woy pepeojumoq ‘€ ‘€202 'L008r76T



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Geophysical Research Letters 10.1029/2022GL101258

seismicity rates and small events coming from selected areas. In the following we describe the individual cata-
logs. In all catalogs, we assumed M, ~ My for earthquakes with M; < 4 when no My, was available (Kili¢
et al., 2017).

1. Catalog derived utilizing Al-based techniques. We applied the PhaseNet deep learning method (Zhu &
Beroza, 2019) to detect and pick the P-and S- waves of seismic events embedded in continuous seismic record-
ings from 16 stations surrounding the region of interest (Figure S2 in Supporting Information S1) resampled at
100 Hz. The method was trained on a data set from Northern California, but has been shown to generalize well
to other tectonic settings. We obtained 323,085 picks, of which 166,963 (51%) are P-wave picks. The picks
were associated into seismic events using the GaMMA association method (Zhu et al., 2022). We manually
checked waveforms from all detections and 516 seismic events with visually clear waveforms were retained.
We estimated their location using the non-linear earthquake location algorithm NLLoc (Lomax et al., 2000)
and the velocity model from Bulut et al. (2009). The locations of the final 390 events for which five or more
picks were available are provided in Figure S3 in Supporting Information S1. The catalog is available in
Martinez-Garzon et al. (2023).

2. Template matching catalog A. We applied the matched filter algorithm EQcorrscan (Chamberlain et al., 2017)
to the two closest seismic stations with the largest data recovery during the period of interest, ARMT and
MDNY (Figure S2 in Supporting Information S1). Details on this catalog are included in Text S1 in Support-
ing Information S1. This catalog contains 2,462 seismic events (all manually reviewed) with magnitudes M,
in the range [—2.4, 4.5]. Because of the inclusion of only two stations, independent location of these events is
not possible. The catalog is available in Martinez-Garzoén et al. (2023).

3. Template matching catalog B. We derived a second template matching catalog utilizing 12 of the closest
seismic stations displaying high seismic data recovery during the analyzed time period (Figure S2 in Support-
ing Information S1). An initial list of detections was generated following the same steps as for the Template
Matching Catalog A, with the additional requirement that all detections must contain at least one pick from
one of the two closest stations, ARMT and MDNY. All detections from this catalog were also manually
reviewed. For events with more than five picks, we estimated their location using the non-linear algorithm
NLLoc (Lomax et al., 2000) and the velocity model from Bulut et al. (2009). This catalog includes 717
seismic events with magnitudes M, in the range [—2.1, 4.5] (Figure S4 in Supporting Information S1). The
catalog is available in Martinez-Garzén et al. (2023).

To explore the relation between seismicity and sea level changes in the remaining three-month time period, we
utilized an enhanced seismicity catalog for this region derived from a temporary seismic deployment in this
area (SMARTNET network) containing up to 30 local stations (Bocchini et al., 2022a, 2022b; Martinez-Garzén
et al., 2021; Figure 1b). We utilized both the entire catalog and a subset of it representing the background
seismicity. The background events were identified using the nearest-neighbor approach of Zaliapin and
Ben-Zion (2013).

The seismicity from these enhanced catalogs was compared with the following standard catalogs covering the
entire analyzed period:

4. Turkish Disaster Management Presidency (AFAD) national seismicity catalog. For the selected time period
and region, this catalog is composed of 144 seismic events with M, in the range [0.9, 4.5].

5. KOERI national seismicity catalog. For the selected time period and region, this catalog is composed of 166
seismic events with M|, in the range 0.8—4.6.

The eastern Sea of Marmara region hosts six Gladwin tensor borehole strainmeters (150 m depth) at different
locations deployed by UNAVCO (Figure 1a) and five of these were operating during the time period analyzed.
The closest three to the M,, 4.5 earthquake are located at 5.5 km (ESN1), 22 km (BOZ1), and 32 km (BUY1).
They are part of the Geophysical borehole Observatory at the North Anatolian Fault (GONAF, Bohnhoff
et al., 2017; Figure 1a). Processing of strainmeter data is performed by UNAVCO and includes down-sampling
from 300 to 1 sample per second to simplify data handling. Tidal corrections and borehole trends were applied
to the strainmeter recordings following Hodgkinson et al. (2013). Corrections for the M2 (the largest lunar
constituent) and O1 (lunar diurnal) tidal modes are calculated using the SPOTL (Agnew, 1996) tidal program
and subtracted from each gauge. The correction of the borehole relaxation trend was calculated by fitting expo-
nential functions to the raw data from the four different gauges of the strain tensor during the entire time of data
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Figure 2. Evolution of daily seismicity rates for the seismicity catalogs and relation to the sea level, precipitation and slow slip during the first analyzed 90 days.

(a) Seismicity rates from AFAD and KOERI catalogs, (b) Seismicity rates from the catalog derived with Al-based techniques, (c) Seismicity rates derived with two
template matching catalogs utilizing different number of stations (see Data and Methods for details). (d) Sea level from the YLVA and MERG stations (magenta and
black lines, respectively). Precipitation data from a pluviometric station in Yalova is represented with gray filled shapes. (e) Evolution of differential and engineering
strain (red and blue lines, respectively) from BOZ1 strainmeter. A slow transient can be observed starting at day 0 (see Martinez-Garzon et al., 2021 for details). (f)
Scatter plot displaying number of events in a time window of 6 hr as a function of the extreme sea level height on that window.

acquisition. From these corrected we calculated the areal ey,g, differential eg_n and engineering 2egn strain
components as:

EN+E = EEE t+ NN
EE-N = EEE — ENN (D
2€gN = €EN + ENE

where egg, enxn, and egy are the three independent components of the horizontal strain tensor and the symmetry
condition egn = eng applies. We focus on the areal strain, extg, Which is more sensitive to changes in the water
column, as well as the differential strain, eg_y, which is more sensitive to tectonic deformation.

3. Results and Discussion
3.1. Seismicity Rates Modulated by Sea Level

The periodic functions best fitting the sea-level changes during the analyzed time period are a sinusoid with a
period of T = 6.3 days until 30 January 2019 (Figure 1d) and a period of 7'= 8.1 days afterward. These two peri-
ods have been related to changes in the barometric pressure from wind forcing (Yiice & Alpar, 1997).

The amplitude of the sea-level change typically did not exceed + 0.2 m, except on day —20 relative to the M, 4.5
event, when seismicity rates increased including a M, 4.3 earthquake shortly after a sea level decrease of —0.6 m,
which was the largest sea-level change during the analyzed 6-month period (Figure 1c).

Both the M, 4.3 and 4.5 earthquakes occurred shortly after local minima of the sea level (Figures 1d and 2).
The five seismicity catalogs have very different magnitude detection thresholds, but the daily seismicity rates
follow a similar distribution (Figure 2). Almost no seismic events were detected during the first 20 days (—50 to
—30) in any of the catalogs. A small number of seismic events are present in the catalogs from day —28. Around
day —20, after a local minimum in sea level the seismicity rates increased, including a M, 4.3 event. Seismicity
continued until day 0, culminating in the M, 4.5 mainshock that ruptured the same onshore fault as the previous
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M, 4.3 event. Between days 0 and 16, seismicity rates were the highest in the observed period. Afterward, seis-
micity rates decayed, with only one more period of elevated seismicity after a local minimum of the sea level (day
25) (Figure 2). Plotting the daily seismicity rates as a function of the extreme sea-level height during that time
period reveals that the three enhanced catalogs display a maximum in the seismicity rates when the sea level is
—0.1 m (Figure 2f).

We investigated whether seismicity rates were affected by the phase of the sea level cycle. We assigned a phase
of & = 0,360 and 6 = 180 to each of the local sea level maxima and minima, respectively, so that phase values
in the range [0-180] correspond to sea level decrease and values in the range [180-360] represent periods of sea
level increase (Figure 3a, Figure S5 in Supporting Information S1). We evaluated the statistical significance of
the observation of seismicity rates depending on sea level by applying a Schuster test (e.g., Cochran et al., 2004;
Shelly et al., 2007) and defining a significance level of 1%. The null hypothesis is that the seismicity rates from
the different catalogs are independent from the sea level phase. For the three enhanced catalogs combined with
the SMARTNET catalog, the p-value rejects the null hypothesis at the defined significance level. This does not
hold when using the two standard catalogs. Therefore, high-resolution catalogs strongly support the notion that
the events from the entire catalog are not independent of sea level changes. Assigning the phase according to the
sinusoid with period 7' = 6.3 days results in smoothing the sea-level variations, but the p-value remains smaller
than significance level (Figure S6 in Supporting Information S1). The three high-resolution catalogs unambigu-
ously show that seismicity rates are larger during the periods of sea-level increase, where the increase in the water
body increases the stress loading (Figures 3b—3d). All three enhanced catalogs show a peak in the seismicity rates
for 6 ~ 200, shortly after local minima, and a second peak around # =~ 330.

The selected time range included two earthquakes with magnitudes My, 4.5 and 4.3 that generated their own after-
shock sequences. We removed from the analysis all seismicity during two and one days following the M, 4.5 and
4.3 mainshocks, respectively. These time ranges were selected based on the distribution of the number of events
with respect to time following these mainshocks, which decayed to background level within those time periods
(Figure S7 in Supporting Information S1). The mainshock My, 4.5 triggered an aftershock sequence that can be
fitted with an Omori law N (¢) = kt~?, with p = 0.57 and k = 0.52 (Figure S7c in Supporting Information S1).
A p < 1 could indicate that the aftershock sequence from this event decayed slower than usual (p ~ 1). The
aftershock sequence of the My, 4.3 event is shorter and the Omori fit is worse (Figure S7d in Supporting Informa-
tion S1). We also utilized a declustered version of the SMARTNET catalog (Bocchini et al., 2022a) to cover the
remaining time period (Figure S8 in Supporting Information S1). Utilizing these catalogs of background seismic-
ity, the p-values from the Schuster test still allow to reject the null hypothesis at the defined significance level,
except with the Al-derived catalog. The peak of the distributions at § ~ 200 is considerably reduced (Figure 3).

Expanding the analysis to a longer continuous time period is difficult because between May and October 2019
the sea level displayed almost no long-term changes with amplitude >0.2 m. This suggests that a certain threshold
normal stress change is needed for the sea-level changes to affect the seismicity rates.

A common source of periodicity in the seismicity rates is a difference between the day and night hours. Utilizing
only the events included in our catalogs between 6p.m. and 9a.m. local time supports the observed dependencies,
and hence they are not simply an artifact of different noise levels between day and night (Figure S9 in Supporting
Information S1). The semi-diurnal tides are marginally observable in the tide-gauge time series (e.g., Figure 1d).

3.2. Constraining Strain Changes From Sea Level Movement

Strainmeters are sensitive to different tectonic, environmental and anthropogenic loading sources. Variations in
the sea level are typically linked with changes in the barometric pressure, and mainly modify the vertical strain.
The areal strain component en,g 1S the most sensitive to vertical strain changes, and as such it is the one that most
resembles the evolution of the sea level (Figure 4a, Figure S10 in Supporting Information S1). Between days —25
and —20 (containing the largest sea-level change immediately before the M|, 4.3 earthquake), we observe a change
in ensg of about —100, —700, and —100 nstrain in ESN1, BOZ1, and BUY 1, respectively (Figure 4a, Figure S5
in Supporting Information S1). During that time, the change in the sea level was about Az = 0.6 m. Therefore,
the pressure change from the change in the water column would be approximately AP = pgAz = 16 kPa. The
geological units in which the ESN1 and BOZ1 strainmeters are deployed are amphibolites and serpentinites,
respectively (Eisenlohr, 1995). Assuming a Young's modulus of E = 60 GPa for these rocks, we can estimate the
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Figure 3. (a) Conceptual sketch illustrating the phases assigned to the observed sea level changes. Light and darker blue
turquoise background colors differentiate the phases that represent a sea level increase and decrease, respectively. The two red
circles illustrate approximately the tidal phases at which peaks of seismicity using the entire and declustered catalogs were
observed, respectively. (b) Number of seismic events with respect of the sea level phase employing the seismicity catalog
derived with Al techniques plus the SMARTNET catalog covering the analyzed time. (c, d) Same as (b) but for the template
matching catalogs A and B. (e, ) Same as (b) but employing the standard seismicity catalogs from the national agencies
AFAD and KOER]I, respectively. In all plots, light gray bars represent the statistics utilizing the entire catalogs, while blue
bars represent the background seismicity catalogs.

strain change from the change in the water column as A €= AP/E = 266 nstrain, which is of the same order as
observed (Figures 4a and 4b). The relation between the differential strain eg_n and the sea level is less obvious,
because this component is more sensitive to shear strain changes, but some response is also observed during the
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Figure 4. Evolution of (a) areal strainmeter components and (b) differential strain components during the analyzed time period for the strainmeters BOZ1 and BUY 1
in the top and bottom panels, respectively (ordered from top to bottom according to distance to the My, 4.5 event). Blue line represents the sea level evolution as
recorded by MERG station (for units, see Figure 2). Vertical black lines mark the origin time of the M, 4.3 and M, 4.5 events that occurred within the study region. (c)
Areal strain component from strainmeters BOZ1 and BUY1 with respect to tidal phase average over all cycles of the analyzed time period (blue line), together with its
standard deviation (green area). (d) Same as (c) but for the differential strain component.

largest sea water changes (Figure 4b, Figure S10 in Supporting Information S1). The change in eg_n between
the days —25 and —20 is approximately 60, 300, and 30 nstrain for ESN1, BOZ1, and BUY 1, respectively. The
differences in strain values recorded by the different strainmeters could be due to several local effects, including
poroelastic effects, or the coupling between the instrument and the surrounding medium. This was well illustrated
with the strong differences obtained between the modeled and observed coseismic strain offsets from the occur-
rence of several earthquakes in southern California (Barbour, 2015).

Estimating the average areal and differential strain components of the BOZ1 strainmeter over all tidal cycles
shows that the areal en4g (representing a normal strain) component reaches a minimum around 6 = 180 — 200,
coinciding with the largest seismicity rates observed. Simultaneously, the differential component eg_y (represent-
ing a shear strain) reaches a maximum value (Figures 4c and 4d). We used only the BOZ1 strainmeter for this
analysis, because the data from the other strainmeter in the area (ESN1) are incomplete during the analyzed time
period. A similar cycle can be observed from the strainmeter BUY1, although this one is located further away
from the study region and the strain changes appear smaller (Figures 4c and 4d). These observations are also in
agreement with previous studies of earthquake triggering from tidal loading, where shallow thrust faults were
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brought to slip when the Coulomb stress from the tidal movement was at its peak (Cochran et al., 2004). Reduced
normal stress resulting in fault unclamping has also be observed to promote the occurrence of seismicity at The
Geysers geothermal field (Delorey & Chen, 2022). However, we note that the standard deviation of the strain
changes over the tidal cycle are large, and therefore the strain change is within the uncertainties of the strainmeter
fluctuations. Recent experiments on laboratory rock samples subjected to periodic changes in the normal and
shear stresses shown that rates of acoustic emissions were promoted during periods of pore pressure decrease
(Chanard et al., 2019). As the faults that we observed to be seismically active during our analysis are mainly
onshore, tracking the evolution of the pore pressure changes in the system with respect to tidal cycles is not trivial
and therefore our observations cannot be directly compared.

4. Conclusions

We investigated the effect of stress variations from sea-level changes on the seismicity in a hydrothermal system
in the eastern Sea of Marmara region in northwestern Tiirkiye over the course of 6 months. We generated
high-resolution seismicity catalogs using both Al-based and template-matching techniques, and compared their
results with standard catalogs employing traditional techniques. All enhanced catalogs showed that local seis-
micity rates from the catalogs significantly increased shortly after minima in the sea level, when the sea level is
rising. This was not apparent in the standard catalogs. Recordings from nearby borehole strainmeters documented
that during the sea-level phase 6 = 200, shortly after the minimum, the areal and differential strains reach mini-
mum and maximum values, respectively, thus contributing to local fault unclamping and activation, although the
standard deviation of the strain measurements is large and the strain change is within the associated uncertainties.
The role of the sea-level changes in the seismicity rates supports the notion that the region is close to failure, and
that small stress perturbations were able to trigger seismicity.

Data Availability Statement

Seismicity catalogs generated in this study with Artificial intelligence and template matching techniques are
publicly available in the GFZ Data Service publication Martinez-Garzén et al. (2023). Seismicity catalogs from
AFAD and KOERI agencies are available under the landing websites https://tdvms.afad.gov.tr/ (last accessed
05/08/2022) and http://www.koeri.boun.edu.tr/sismo/2/earthquake-catalog/ (last accessed 05/08/2022), respec-
tively. The here generated AFAD and KOERI catalogs correspond to the time period from 1 November 2018 to
31 January 2019, and longitude and latitude ranges of 28.80°-29.10°, and 40.4°-40.625°, respectively. Data from
the strainmeters (https://www.unavco.org/data/strain-seismic/bsm-data/bsm-data.html) are based on services
provided by the Geodetic Facility for the Advancement of Geoscience (GAGE) Facility, operated by UNAVCO,
Inc., with support from the National Science Foundation (NSF) and the National Aeronautics and Space Admin-
istration (NASA) under NSF Cooperative Agreement EAR-1724794. The here employed strainmeter time series
correspond to instruments BOZ1, BUY1, ESN1, HALK, SIV1, and TEPE. For each of them, processed data in
ASCII format is utilized.
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