298 research outputs found

    N-doped sponge-like biochar: a promising CO2 sorbent for COâ‚‚/CHâ‚„ and CO2/Nâ‚‚ gas separation

    Get PDF
    Sponge-like biochar sorbents were prepared from the dissolution of chitosan followed by freeze-drying methodology and pyrolysis at three different temperatures (400, 600, and 800 °C) to produce sustainable N-enriched carbon materials with enhanced CO2 uptake from CO2/CH4 and CO2/N2 gas mixtures. The pyrolysis process was reproduced by operando TGA-IR to study the gas evolved from the pyrolysis process. It was found that the pyrolysis temperature highly influences the textural properties of the chitosan sponge-like biochar materials, impacting mainly the amount and type of the N-species on the sample but also at the microporosity. XPS revealed the transformation of the amino groups from chitosan into pyridinic-N, pyrrolic-N, graphitic center-N, and graphitic valley-N or pyridine-N oxide species during the pyrolysis process. Increasing the pyrolysis temperature enhanced the quantity of the latter two N-type species. All sponge-like biochars adsorbed higher amounts of CO2 compared with CH4 and N2 gases, with maximum CO2 uptake (∼1.6 mmol⋅g−1) at 100 kPa and 25 °C for the sample pyrolyzed at 600 °C (named CTO_P600). Biochar produced at 800 °C showed no longer adsorption capacity for CH4 and N2, having the highest selectivity value for CO2/N2 separation under continuous flux conditions among all prepared biochar sorbents. Isobaric CO2 adsorption measurements on the CTO_P600 sorbent revealed that physisorption phenomena predominantly governed the CO2 adsorption process, which was confirmed by its consistent adsorption capacity after 10 consecutive adsorption–desorption cycles. Moreover, the biochar exhibited tolerance to water vapor adsorption, indicating its suitability to work under moisture-rich conditions.publishe

    Cancer incidence in pet dogs: findings of the Animal Tumor Registry of Genoa, Italy.

    Get PDF
    Background: The occurrence of spontaneous tumors in pet animals has been estimated in a few European and North American veterinary cancer registries with dissimilar methodologies and variable reference populations. Objectives: The Animal Tumor Registry (ATR) of Genoa, Italy, was established in 1985 with the aim of estimating the occurrence of spontaneous tumors in dogs. Methods: Six thousand seven hundred and forty-three tumor biopsy specimens were received from local veterinarians in the Municipality of Genoa between 1985 and 2002. Three thousand and three hundred and three (48.9%) biopsy specimen samples were diagnosed as cancer and were coded according to the International Statistical Classification of Diseases (ICD-9). Results: Mammary cancer was the most frequently diagnosed cancer in female dogs, accounting for 70% of all cancer cases. Incidence of all cancers was 99.3 per 100,000 dog-years (95% CI: 93.6–105.1) in male dogs and 272.1 (95% CI: 260.7–283.6) in female dogs. The highest incidence rates were detected for mammary cancer (IR = 191.8, 95% CI: 182.2–201.4) and for non-Hodgkin's lymphoma (IR = 22.9, 95% CI: 19.7–26.5) in bitches and for non-Hodgkin's lymphoma (IR = 19.9, 95% CI: 17.4–22.7) and skin cancer (IR = 19.1, 95% CI: 16.6–21.8) in male dogs. All cancer IR increased with age ranging between 23.7 (95% CI: 18.4–30.1) and 763.2 (95% CI: 700.4–830.1) in bitches and between 16.5 (95% CI: 12.8–21.1) and 237.6 (95% CI: 209.1–269.0) in male dogs aged ≤3 years and >9–11 years. Conclusion: This study summarizes the work done by the ATR of Genoa, Italy, between 1985 and 2002. All cancer incidence was 3 times higher in female than in male dogs, a difference explained by the high rate of mammary cancer observed in bitches. Because a biopsy specimen was required to make a cancer diagnosis, cancer rates for internal organs cancers, such as respiratory and digestive tract cancers may have been underestimated in the study population

    Combining preclinical tools and models to unravel tumor complexity: Jump into the next dimension

    Get PDF
    Tumors are complex and heterogeneous diseases characterized by an intricate milieu and dynamically in connection with surrounding and distant tissues. In the last decades, great efforts have been made to develop novel preclinical models able to recapitulate the original features of tumors. However, the development of an in vitro functional and realistic tumor organ is still utopic and represents one of the major challenges to reproduce the architecture of the tumor ecosystem. A strategy to decrypt the whole picture and predict its behavior could be started from the validation of simplified biomimetic systems and then proceed with their integration. Variables such as the cellular and acellular composition of tumor microenvironment (TME) and its spatio-temporal distribution have to be considered in order to respect the dynamic evolution of the oncologic disease. In this perspective, we aim to explore the currently available strategies to improve and integrate in vitro and in vivo models, such as three-dimensional (3D) cultures, organoids, and zebrafish, in order to better understand the disease biology and improve the therapeutic approaches

    Predictive modeling of die filling of the pharmaceutical granules using the flexible neural tree

    Get PDF
    In this work, a computational intelligence (CI) technique named flexible neural tree (FNT) was developed to predict die filling performance of pharmaceutical granules and to identify significant die filling process variables. FNT resembles feedforward neural network, which creates a tree-like structure by using genetic programming. To improve accuracy, FNT parameters were optimized by using differential evolution algorithm. The performance of the FNT-based CI model was evaluated and compared with other CI techniques: multilayer perceptron, Gaussian process regression, and reduced error pruning tree. The accuracy of the CI model was evaluated experimentally using die filling as a case study. The die filling experiments were performed using a model shoe system and three different grades of microcrystalline cellulose (MCC) powders (MCC PH 101, MCC PH 102, and MCC DG). The feed powders were roll-compacted and milled into granules. The granules were then sieved into samples of various size classes. The mass of granules deposited into the die at different shoe speeds was measured. From these experiments, a dataset consisting true density, mean diameter (d50), granule size, and shoe speed as the inputs and the deposited mass as the output was generated. Cross-validation (CV) methods such as 10FCV and 5x2FCV were applied to develop and to validate the predictive models. It was found that the FNT-based CI model (for both CV methods) performed much better than other CI models. Additionally, it was observed that process variables such as the granule size and the shoe speed had a higher impact on the predictability than that of the powder property such as d50. Furthermore, validation of model prediction with experimental data showed that the die filling behavior of coarse granules could be better predicted than that of fine granules

    A water-filled garment to protect astronauts during interplanetary missions tested on board the ISS

    Get PDF
    Abstract As manned spaceflights beyond low Earth orbit are in the agenda of Space Agencies, the concerns related to space radiation exposure of the crew are still without conclusive solutions. The risk of long-term detrimental health effects needs to be kept below acceptable limits, and emergency countermeasures must be planned to avoid the short-term consequences of exposure to high particle fluxes during hardly predictable solar events. Space habitat shielding cannot be the ultimate solution: the increasing complexity of future missions will require astronauts to protect themselves in low-shielded areas, e.g. during emergency operations. Personal radiation shielding is promising, particularly if using available resources for multi-functional shielding devices. In this work we report on all steps from the conception, design, manufacturing, to the final test on board the International Space Station (ISS) of the first prototype of a water-filled garment for emergency radiation shielding against solar particle events. The garment has a good shielding potential and comfort level. On-board water is used for filling and then recycled without waste. The successful outcome of this experiment represents an important breakthrough in space radiation shielding, opening to the development of similarly conceived devices and their use in interplanetary missions as the one to Mars

    Self-perceived normality in defecation habits

    Get PDF
    Background: Available information on normal bowel habits was mainly gathered by means of telephone interviews or mailed questionnaires. Aims: We undertook a prospective study to evaluate the defecatory habits in subjects perceiving themselves as normal concerning this function. Subjects and Methods: A questionnaire (4-week diary with "yes-no" daily answers to six questions concerning bowel habits) was distributed to 204 subjects perceiving their defecation behaviour as normal. Results: The completed questionnaire was returned by 140 subjects. No significant differences were found between sexes or age groups for any variable, even though straining at stool and feeling of incomplete and/or difficult evacuation showed a trend to increase with age. No subject had less than three bowel movements per week or more than three per day. The percentage of symptoms linked to an abnormal defecatory behaviour was well below 10%. Fifty-five percent of subjects reported at least one parameter of abnormal functioning; the most frequent was straining at stool and the rarer was the manual manoeuvres to help defecation. Conclusions: In normal subjects the prevalence of symptoms considered in Rome II criteria as part of an abnormal defecatory behaviour (in more than 25% of defecations) is well below 10%, manual manoeuvres are almost never used to help defecation, and the frequency of defecations is at least three per week. © 2005 Editrice Gastroenterologica Italiana S.r.l

    Novel role for the innate immune receptor toll-like receptor 4 (TLR4) in the regulation of the wnt signaling pathway and photoreceptor apoptosis

    Get PDF
    Recent evidence has implicated innate immunity in regulating neuronal survival in the brain during stroke and other neurodegenerations. Photoreceptors are specialized light-detecting neurons in the retina that are essential for vision. In this study, we investigated the role of the innate immunity receptor TLR4 in photoreceptors. TLR4 activation by lipopolysaccharide (LPS) significantly reduced the survival of cultured mouse photoreceptors exposed to oxidative stress. With respect to mechanism, TLR4 suppressed Wnt signaling, decreased phosphorylation and activation of the Wnt receptor LRP6, and blocked the protective effect of the Wnt3a ligand. Paradoxically, TLR4 activation prior to oxidative injury protected photoreceptors, in a phenomenon known as preconditioning. Expression of TNFα and its receptors TNFR1 and TNFR2 decreased during preconditioning, and preconditioning was mimicked by TNFα antagonists, but was independent of Wnt signaling. Therefore, TLR4 is a novel regulator of photoreceptor survival that acts through the Wnt and TNFα pathways. © 2012 Yi et al

    Research needs towards a resilient community: Vulnerability reduction, infrastructural systems model, loss assessment, resilience-based design and emergency management

    Get PDF
    Most of the literature on resilience is devoted to its assessment. It seems time to move from analysis to design, to develop the tools needed to enhance resilience. Resilience enhancement, a close relative of the less fashionable risk mitigation, adds to the latter, at least in the general perception, a systemic dimension. Resilience is often paired with community, and the latter is a system. This chapter therefore discusses strategies to enhance resilience, endorses one of prevention rather than cure, and focuses in the remainder on the role played by systemic analysis, i.e. the analysis of the built environment modelled beyond a simple collection of physical assets, with due care to the associated interdependencies. Research needs are identified and include challenges in network modelling, the replacement of generic fragility curves for components, how to deal with evolving state of information
    • …
    corecore