24 research outputs found

    Assessing the risk of vehicle instability due to flooding

    Full text link
    [EN] Flooding can destabilize vehicles which might, in turn, exacerbate the negative effects of floods when vehicles are swept away by flows, and lead to economic loss and fatalities. In order to suitably manage floods, it is necessary to determine the risk of instability to which vehicles in flood-prone areas are subject. This paper develops a methodology to estimate this risk based on the characteristics of floods and the vehicle fleet located in potential flood-prone areas. This risk is determined by the statistical integral of the instability hazard and vehicles' vulnerability. The instability hazard was established by a stability function of partially submerged cars and flood frequency, while vulnerability was calculated by combining the susceptibility and exposure of cars. Our methodology was applied in the towns of Alfafar and Massanassa (Spain). It found that the annualized instability risk due to flooding could be relatively high on most streets and roads, with values reaching the order of 8.4 at-risk vehicles per hectare/year.Departamento Administrativo de Ciencia, Tecnologia e Innovacion COLCIENCIAS (Colombia) call, Grant/Award Number: 728-2015; Spanish Ministry of Science and Innovation through the research project TETISCHANGE, Grant/Award Number: RTI2018-093717-B-I00Bocanegra, RA.; Francés, F. (2021). Assessing the risk of vehicle instability due to flooding. Journal of Flood Risk Management. 14(4):1-15. https://doi.org/10.1111/jfr3.12738S11514

    Review and analysis of vehicle stability models during floods and proposal for future improvements

    Full text link
    This is the peer reviewed version of the following article: Bocanegra, RA, Vallés-Morán, FJ, Francés, F. Review and analysis of vehicle stability models during floods and proposal for future improvements. J Flood Risk Management. 2020; 13 ( Suppl. 1):e12551, which has been published in final form at https://doi.org/10.1111/jfr3.12551. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Flood water can affect vehicles significantly, which in turn can increase the negative effects of floods as vehicles are washed away by the flow and become a form of debris. In cities, most fatalities during floods occur inside vehicles. Consequently, it is necessary to establish thresholds for vehicle stability during this type of event to provide information necessary for flood risk management. This article analyses the available stability models developed over recent years to determine such thresholds. The stability models were grouped according to the way in which they approached car watertightness and the stability thresholds proposed by each of them were compared. It was found that these thresholds vary over a relatively wide range. Additionally, the experimental data were compared with the results provided by these studies leading to the conclusion that several of the stability models analysed do not fit measured data well. New research is required to overcome the simplifications made by the state-of-the-art models and to try to standardise the decision criteria which should be adopted to define stability thresholds for vehicles of different characteristics.Departamento Administrativo de Ciencia, Tecnologia e Innovacion COLCIENCIAS (Colombia) call 728-2015; Spanish Ministry of Science and Innovation through the research project TETISCHANGE, Grant/Award Number: RTI2018-093717-B-I00.Bocanegra, RA.; Vallés-Morán, FJ.; Francés, F. (2020). Review and analysis of vehicle stability models during floods and proposal for future improvements. Journal of Flood Risk Management. 13:1-13. https://doi.org/10.1111/jfr3.12551S11313Arrighi, C., Alcèrreca-Huerta, J. C., Oumeraci, H., & Castelli, F. (2015). Drag and lift contribution to the incipient motion of partly submerged flooded vehicles. Journal of Fluids and Structures, 57, 170-184. doi:10.1016/j.jfluidstructs.2015.06.010Arrighi C. Castelli F. &Oumeraci H.(2016). Effects of flow orientation on the onset of motion of flooded vehicles. InProceedings of the 4th IAHR Europe Congress. Liege DOI:https://doi.org/10.1201/b21902-140.Arrighi, C., Huybrechts, N., Ouahsine, A., Chassé, P., Oumeraci, H., & Castelli, F. (2016). Vehicles instability criteria for flood risk assessment of a street network. Proceedings of the International Association of Hydrological Sciences, 373, 143-146. doi:10.5194/piahs-373-143-2016Bonham A. J. &Hattersley R. T.(1967).Low level causeways. WRL Report No. 100. University of New South Wales. Sydney Australia.Cox R. J. Shand T. D. &Blacka M. J.(2010). Appropriate safety criteria for people in floods.Australian Rainfall and Runoff. WRL Research Report 240. Report for Institution of Engineers Australia.DROBOT, S., BENIGHT, C., & GRUNTFEST, E. (2007). Risk factors for driving into flooded roads. Environmental Hazards, 7(3), 227-234. doi:10.1016/j.envhaz.2007.07.003FitzGerald, G., Du, W., Jamal, A., Clark, M., & Hou, X.-Y. (2010). Flood fatalities in contemporary Australia (1997-2008). Emergency Medicine Australasia, 22(2), 180-186. doi:10.1111/j.1742-6723.2010.01284.xGordon A. D. &Stone P. B.(1973).Car stability on road causeways. WRL Technical Report No. 73/12. University of New South Wales. Sydney Australia.Jonkman, S. N., & Kelman, I. (2005). An Analysis of the Causes and Circumstances of Flood Disaster Deaths. Disasters, 29(1), 75-97. doi:10.1111/j.0361-3666.2005.00275.xKellar, D. M. M., & Schmidlin, T. W. (2012). Vehicle-related flood deaths in the United States, 1995-2005. Journal of Flood Risk Management, 5(2), 153-163. doi:10.1111/j.1753-318x.2012.01136.xKeller R. J. &Mitsch B.(1993).Safety aspects of the design of roadways as floodways. Research Report No. 69 Urban Water Research Association of Australia.Kramer, M., Terheiden, K., & Wieprecht, S. (2016). Safety criteria for the trafficability of inundated roads in urban floodings. International Journal of Disaster Risk Reduction, 17, 77-84. doi:10.1016/j.ijdrr.2016.04.003Martínez-Gomariz, E., Gómez, M., Russo, B., & Djordjević, S. (2016). Stability criteria for flooded vehicles: a state-of-the-art review. Journal of Flood Risk Management, 11, S817-S826. doi:10.1111/jfr3.12262Martínez-Gomariz, E., Gómez, M., Russo, B., & Djordjević, S. (2017). A new experiments-based methodology to define the stability threshold for any vehicle exposed to flooding. Urban Water Journal, 14(9), 930-939. doi:10.1080/1573062x.2017.1301501Mens M. J. Erlich M. Gaume E. Lumbroso D. Moreda Y. Van der VatM. &Versini P. A.(2008).Frameworks for flood event management. Report Number T19‐07‐03. WL Delft Hydraulics. Delft Netherlands.Moore, K. A., & Power, R. K. (2002). Safe Buffer Distances for Offstream Earth Dams. Australasian Journal of Water Resources, 6(1), 1-15. doi:10.1080/13241583.2002.11465206Oshikawa H. &Komatsu T.(2014). Study on the risk evaluation for a vehicular traffic in a flood situation.Proceedings of the 19th IAHR‐APD Congress Hanoi Vietnam.Pregnolato, M., Ford, A., Wilkinson, S. M., & Dawson, R. J. (2017). The impact of flooding on road transport: A depth-disruption function. Transportation Research Part D: Transport and Environment, 55, 67-81. doi:10.1016/j.trd.2017.06.020Shand T. Cox R. Blacka M. &Smith G.(2011).Australian Rainfall and Runoff (AR&R). Appropriate safety criteria for vehicles. Australian rainfall and runoff revision project 10: Report Number: P10/S2/020. Sidney Australia.Shu, C., Xia, J., Falconer, R. A., & Lin, B. (2011). Incipient velocity for partially submerged vehicles in floodwaters. Journal of Hydraulic Research, 49(6), 709-717. doi:10.1080/00221686.2011.616318Smith G. P. Davey E. K. &Cox R. J.(2014).Flood hazard. WRL Technical Report 2014/07. University of New South Wales. Sydney Australia.Smith G. P. Modra B. D. Tucker T. A. &Cox R. J.(2017).Vehicle stability testing for flood flows. WRL Technical Report 2017/07. University of New South Wales. Sydney Australia.Suarez, P., Anderson, W., Mahal, V., & Lakshmanan, T. R. (2005). Impacts of flooding and climate change on urban transportation: A systemwide performance assessment of the Boston Metro Area. Transportation Research Part D: Transport and Environment, 10(3), 231-244. doi:10.1016/j.trd.2005.04.007Teo, F. Y., Xia, J., Falconer, R. A., & Lin, B. (2012). Experimental studies on the interaction between vehicles and floodplain flows. International Journal of River Basin Management, 10(2), 149-160. doi:10.1080/15715124.2012.674040Versini, P.-A., Gaume, E., & Andrieu, H. (2010). Application of a distributed hydrological model to the design of a road inundation warning system for flash flood prone areas. Natural Hazards and Earth System Sciences, 10(4), 805-817. doi:10.5194/nhess-10-805-2010Versini, P.-A., Gaume, E., & Andrieu, H. (2010). Assessment of the susceptibility of roads to flooding based on geographical information – test in a flash flood prone area (the Gard region, France). Natural Hazards and Earth System Sciences, 10(4), 793-803. doi:10.5194/nhess-10-793-2010Xia, J., Falconer, R. A., Xiao, X., & Wang, Y. (2013). Criterion of vehicle stability in floodwaters based on theoretical and experimental studies. Natural Hazards, 70(2), 1619-1630. doi:10.1007/s11069-013-0889-2Xia, J., Teo, F. Y., Lin, B., & Falconer, R. A. (2010). Formula of incipient velocity for flooded vehicles. Natural Hazards, 58(1), 1-14. doi:10.1007/s11069-010-9639-

    Determinación de relaciones nivel – caudal simple o compleja en un río. Caso del río Cauca

    Get PDF
    (Eng) The stage – discharge relationship in a river, or rating curve, is very useful because it allows calculating the discharg - es from measured stages or water levels in a gauge station. For a nearly steady regime a discharge corresponds to a water level (simple relationship). However, frequently different circumstances can originate a complex relation between waters levels and discharges and then a discharge can be referred to two water levels and vice versa. In this study, simple and complex rating curves were determined in La Balsa hydrometric station, located 27 km downstream of Salvajina reservoir (Cauca river, Colombia). The simple curve was calculated by applying the log - arithmic method, which allows identifying the characteristics of the type of control that determines the water level – discharge relationship. The complex curve was calculated by using the method of storage per unit rate of variation in water levels, which allows adjusting the discharge obtained with the rating curve for steady flow considering a storage due to the variation in the level. The results show significant differences in the estimated discharges through the two relationships. By applying the two rating curves for a moderate flood (01/01/1999) differences up to 19% were estimated between both calculated discharges. In consequence, in order to get the appropriated rating curve it should to carry out a rigorous analysis of the flow conditions on the river reaches of the hydrometric station.(Spa) La relación nivel de agua – caudal en un río, denominada también curva de calibración, es de gran utilidad práctica pues permite estimar los caudales a partir de los niveles registrados en una estación hidrométrica. Cuando el régimen es aproximadamente permanente a cada nivel le corresponde un caudal (relación simple). No obstante, frecuente - mente diferentes circunstancias pueden generar una relación compleja entre los niveles y los caudales, donde un caudal puede estar relacionado con dos niveles de agua y viceversa. En el presente estudio se determinaron las cur - vas de calibración simple y compleja en la estación La Balsa, localizada 27 km aguas abajo del embalse de Salvajina (río Cauca, Colombia). La curva simple se calculó mediante el método logarítmico, el cual permite identificar las características del tipo de control que determina la relación nivel – caudal. La curva compleja se calculó según el método de almacenamiento por unidad de tasa de cambio en los niveles de agua, el cual permite ajustar el caudal obtenido en la curva nivel – caudal para régimen permanente considerando un almacenamiento debido al cambio en el nivel. Los resultados muestran diferencias importantes en los caudales estimados por medio de las dos relaciones. Al aplicar las dos curvas de calibración para una creciente moderada (01/01/1999) se encontraron diferencias hasta de un 19% entre los caudales calculados. En consecuencia, para establecer la curva de calibración nivel-caudal apropiada se debe realizar un análisis riguroso de las condiciones del flujo, tanto en la estación hidrométrica como aguas arriba y aguas abajo de ella

    Numerical Assessment of the Structural Effects of Relative Sliding between Tissues in a Finite Element Model of the Foot

    Get PDF
    Penetration and shared nodes between muscles, tendons and the plantar aponeurosis mesh elements in finite element models of the foot may cause inappropriate structural behavior of the tissues. Penetration between tissues caused using separate mesh without motion constraints or contacts can change the loading direction because of an inadequate mesh displacement. Shared nodes between mesh elements create bonded areas in the model, causing progressive or complete loss of load transmitted by tissue. This paper compares by the finite element method the structural behavior of the foot model in cases where a shared mesh has been used versus a separated mesh with sliding contacts between some important tissues. A very detailed finite element model of the foot and ankle that simulates the muscles, tendons and plantar aponeurosis with real geometry has been used for the research. The analysis showed that the use of a separate mesh with sliding contacts and a better characterization of the mechanical behavior of the soft tissues increased the mean of the absolute values of stress by 83.3% and displacement by 17.4% compared with a shared mesh. These increases mean an improvement of muscle and tendon behavior in the foot model. Additionally, a better quantitative and qualitative distribution of plantar pressure was also observed.Fac. de Enfermería, Fisioterapia y PodologíaTRUEMinistry of Economy Government of SpainCONACYT, Mexicopu

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Determining the vehicle instability risk in stream crossings

    Full text link
    [EN] Floods negatively affect roads, vehicles and transport systems in general. The impact on these systems leads to a cascasing effect with significant repercussions. Due to this, the evaluation of the instability risk to which the vehicles are subjected in stream crossing is necessary for the integral management of floods. A methodology was herein developed that allows instability risks due to floods to be estimated for vehicles driving through stream crossings, which may correspond to fords, vented fords or bridges. Risk was calculated by combining hazard and vulnerability. To determine hazard, a stability function of partially submerged vehicles, the geometric characteristics of vehicles, the hydrodynamic characteristics of floods (water depths and velocities) and the probability of them occurring were employed. Vulnerability was determined by combining exposure and susceptibility, which are respectively established with the exposure and damage function. To determine exposure, a limit water depth to interrupt the traffic of vehicles through the flooded area was considered. The developed methodology was applied to the Godelleta municipality (Spain), and found that roughly one quarter of the stream crossings in this study area presented a relatively high vehicle instability risk due to floods because it exceeded 0.2 vehicles/year.Departamento Administrativo de Ciencia, Tecnologia e Innovacion COLCIENCIAS (Colombia) call, Grant/Award Number: 728-2015; Spanish Ministry of Science and Innovation through the research project TETISCHANGE, Grant/Award Number: RTI2018-093717-B-I00Bocanegra, RA.; Francés, F. (2021). Determining the vehicle instability risk in stream crossings. Journal of Flood Risk Management. 14(4):1-13. https://doi.org/10.1111/jfr3.12737S11314

    Modelación morfológica del río Cauca en el tramo La Balsa-Juanchito

    No full text
    Cualquier intervención natural o antrópica en un río origina cambios en su morfología que pueden propagarse grandes distancias aguas arriba y aguas abajo del sitio intervenido, generando riesgos para las diferentes estructuras existentes, desbordamientos, etc. Predecir los cambios morfológicos en un río es posible a través de la modelación. La Corporación Autónoma Regional del Valle del Cauca, CVC, y la Universidad del Valle desarrollaron un modelo morfológico unidimensional (con base en el modelo MIKE 11) para el Río Cauca en el tramo de 110 kilómetros de longitud entre La Balsa y Juanchito. Se efectuó una primera calibración del modelo para el período 1986-2000 utilizando información suministrada por CVC y obtenida de programas de campo. Se realizó un análisis de sensibilidad que permitió identificar los parámetros que ejercen una mayor influencia en los procesos de agradación y degradación del lecho. La modelación desarrollada evidencia procesos graduales y alternados de erosión y sedimentación en el tiempo a lo largo del río debido a la variación estacional de los caudales

    Impacto de obras de protección contra inundaciones en la hidrodinámica del río Cauca tramo La Balsa - La Virginia

    No full text
    En el presente estudio se evaluó el efecto sobre los niveles de agua y los caudales en el río Cauca originados por la construcción de aproximadamente 250 km de diques marginales de proteccion en el tramo La Balsa -- La Virginia. Para ello se implementaron los modelos matemáticos MIKE11 HD y MIKE11 GIS y se generaron y compararon los mapas de inundación para las condiciones de diques existentes y proyectados. Igualmente se determinaron las variaciones en los niveles de agua y los caudales a lo largo del río en el sector evaluado. Se encontró que al construir los diques se evita la inundación de los sectores no protegidos anteriormente; sin embargo, debido al confinamiento los niveles de agua pueden incrementarse entre 0.25 m y 1.0 m en todo el tramo originando desbordamientos en sectores antes no anegados. En consecuencia, la frecuencia de ocurrencia de los niveles máximos en el río se incrementa con la construcción de los diques

    Metodología para estimar los volúmenes máximos de explotación de materiales de arrastre en un río

    No full text
    La extracción de los materiales del lecho en un río origina la erosión o incisión general del cauce, erosión remontante en los tributarios, daños en diferentes estructuras (puentes, captaciones, diques, muros de protección, casas y carreteras), descenso en los niveles freáticos, pérdida de la flora y la fauna acuáticas y riparias y, en general, el desequilibrio del río, poniendo en riesgo el ecosistema fluvial y su entorno. Con el fin de minimizar estos impactos negativos se propone una metodología para estimar los volúmenes máximos de explotación anuales basada en el transporte anual de sedimentos en el río, esto es, en la capacidad de la corriente para reponer los materiales extraídos. Es fundamental, inicialmente, adelantar un estudio integral del río, considerando los diferentes aspectos (hidrológicos, hidráulicos, transporte de sedimentos) para comprender su dinámica, enfatizando en los procesos geomorfológicos y en la identificación de otras intervenciones (presas, captaciones, obras de protección, descargas) que puedan estar afectándolo. Se deben establecer los posibles sectores de agradación del cauce, es decir, los tramos con mayores potenciales de explotación, e igualmente estimar los cambios morfológicos que se puedan originar por las actividades mineras. En la metodología propuesta también es imprescindible el monitoreo periódico de la carga de fondo y la variación de los niveles del fondo del cauce, la actualización de la curva de duración de las cargas anuales de sedimentos en el río y el pronóstico del régimen de caudales para cada añ

    Determinación de relaciones nivel – caudal simple o compleja en un río. Caso del río Cauca

    No full text
    The water level – discharge relationship in a river, or rating curve, is very useful because it allows to calculate the discharges from measured water levels in gauge station. For a nearly permanent regime a discharge corresponds to a water level (simple relationship). However, frequently different circumstances and interventions can affect and invalidate this relationship, like a tributary discharging in the river, the backwater created by a control or regulation structure (dam, weir, etc.), floods or the operation of a reservoir. These factors originate a complex relation between waters levels and discharges and then a discharge can be referred to two water levels and vice versa. In this study the single and complex rating curves were determined in La Balsa hydrometric station, located 27 km downstream of Salvajina dam (Cauca river, Colombia). The simple curve was calculated by applying the logarithmic method and the complex curve by using the method of storage per unit rate of change in water levels. The results show significant differences in the estimated discharges through the two relationships. By applying the two rating curves for a moderate flood (01/01/1999) differences up to 19% were estimated between both calculated discharges. In consequence, in order to get the appropriated rating curve it should to carry out a rigorous analysis of the flow conditions on the river reaches of the hydrometric station.La relación nivel de agua – caudal en un río, denominada también curva de calibración, es de gran utilidad práctica pues permite estimar los caudales a partir de los niveles registrados en una estación hidrométrica. Cuando el régimen es aproximadamente permanente a cada nivel le corresponde un caudal (relación simple). No obstante, frecuentemente diferentes circunstancias e intervenciones pueden afectar e invalidar dicha relación, como puede ser la descarga de un tributario, el remanso originado por una estructura de control o regulación (represa, vertedero, etc.), el tránsito de una creciente o la operación de un embalse. Estos factores generan una relación compleja entre los niveles y los caudales, donde un caudal puede estar relacionado con dos niveles de agua y viceversa. En el presente estudio se determinaron las curvas de calibración simple y compleja en la estación La Balsa, localizada 27 km aguas abajo del embalse de Salvajina (río Cauca, Colombia). La curva simple se calculó mediante el método logarítmico y la compleja según el método de almacenamiento por unidad de tasa de cambio en los niveles de agua. Los resultados muestran diferencias importantes en los caudales estimados por medio de las dos relaciones. Al aplicar las dos curvas de calibración para una creciente moderada se encontraron diferencias hasta de un 19% entre los caudales calculados. En consecuencia, para establecer la curva de calibración nivel-caudal apropiada se debe realizar un análisis riguroso de las condiciones del flujo tanto en la estación hidrométrica como aguas arriba y aguas abajo de ella
    corecore