14 research outputs found

    Nonrandomized comparison of local urokinase thrombolysis versus systemic heparin anticoagulation for superior sagittal sinus thrombosis

    Get PDF
    Background and Purpose We sought to compare the safety and efficacy of direct urokinase thrombolysis with systemic heparin anticoagulation for superior sagittal sinus thrombosis (SSST). Methods At University at Buffalo (NY) and University of Texas (Dallas, Houston), we reviewed 40 consecutive patients with SSST, treated with local urokinase (thrombolysis group) or systemic heparin anticoagulation (heparin group). The thrombolysis group (n=20) received local urokinase into the SSS followed by systemic heparin anticoagulation. The heparin group (n=20) received systemic heparin anticoagulation only. Neurological dysfunction was rated as follows: 0, normal; 1, mild (but able to ambulate and communicate); 2, moderate (unable to ambulate, normal mentation); and 3, severe (unable to ambulate, altered mentation). Results Age (P=0.49), sex (P=0.20), baseline venous infarction (P=0.73), and predisposing illnesses (P=0.52) were similar between the thrombolysis and heparin groups. Pretreatment neurological function was worse in the thrombolysis group (normal, n=5; mild, n=8; moderate, n=4; severe, n=3) than in the heparin group (normal, n=8; mild, n=8; moderate, n=3; severe, n=1) (P=NS). Discharge neurological function was better in the thrombolysis group (normal, n=16; mild, n=3; moderate, n=1; severe, n=0) than in the heparin group (normal, n=9; mild, n=6; moderate, n=5; severe, n=0) (P=0.019, Mann-Whitney U test). Hemorrhagic complications were 10% (n=2) in the thrombolysis group (subdural hematoma, retroperitoneal hemorrhage) and none in the heparin group (P=0.49). Three of the heparin group patients developed complications of the underlying disease (status epilepticus, hydrocephalus, refractory papilledema). No deaths occurred. Length of hospital stay was similar between the groups (P=0.79). Conclusions Local thrombolysis with urokinase is fairly well tolerated and may be more effective than systemic heparin anticoagulation alone in treating SSST. A randomized, prospective study comparing these 2 treatments for SSST is warranted

    Pharmacological Effects of Asiatic acid in Glioblastoma Cells under Hypoxia

    Get PDF
    Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumor in adults. Despite current treatment options including surgery followed by radiation and chemotherapy with temozolomide (TMZ) and cisplatin, the median survival rate remains low (<16 months). Combined with increasing drug resistance and the inability of some compounds to cross the blood brain barrier (BBB), novel compounds are being sought for the treatment of this disease. Here, we aimed to examine the pharmacological effect of Asiatic acid (AA) in glioblastoma under hypoxia. To investigate the effects of AA on cell viability, proliferation, apoptosis and wound healing, SVG p12 fetal glia and U87-MG grade IV glioblastoma cells were cultured under normoxic (21% O2) and hypoxic (1% O2) conditions. In normoxia, AA reduced cell viability in U87-MG cells in a time and concentration-dependent manner. A significant decrease in viability, compared to cisplatin, was observed following 2hrs of AA treatment with no significant changes in cell proliferation or cell cycle progression observed. Under hypoxia, a significantly greater number of cells underwent apoptosis in comparison to cisplatin. While cisplatin showed a reduction in wound healing in normoxia, a significantly greater reduction was observed following AA treatment. An overall reduction in wound healing was observed under hypoxia. The results of this study show that AA has cytotoxic effects on glioma cell lines and has the potential to become an alternative treatment for glioblastoma

    Levetiracetam enhances p53-mediated MGMT inhibition and sensitizes glioblastoma cells to temozolomide

    No full text
    Antiepileptic drugs (AEDs) are frequently used to treat seizures in glioma patients. AEDs may have an unrecognized impact in modulating O6-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein that has an important role in tumor cell resistance to alkylating agents. We report that levetiracetam (LEV) is the most potent MGMT inhibitor among several AEDs with diverse MGMT regulatory actions. In vitro, when used at concentrations within the human therapeutic range for seizure prophylaxis, LEV decreases MGMT protein and mRNA expression levels. Chromatin immunoprecipitation analysis reveals that LEV enhances p53 binding on the MGMT promoter by recruiting the mSin3A/histone deacetylase 1 (HDAC1) corepressor complex. However, LEV does not exert any MGMT inhibitory activity when the expression of either p53, mSin3A, or HDAC1 is abrogated. LEV inhibits malignant glioma cell proliferation and increases glioma cell sensitivity to the monofunctional alkylating agent temozolomide. In 4 newly diagnosed patients who had 2 craniotomies 7–14 days apart, prior to the initiation of any tumor-specific treatment, samples obtained before and after LEV treatment showed the inhibition of MGMT expression. Our results suggest that the choice of AED in patients with malignant gliomas may have an unrecognized impact in clinical practice and research trial design

    Disulfiram is a direct and potent inhibitor of human O6-methylguanine-DNA methyltransferase (MGMT) in brain tumor cells and mouse brain and markedly increases the alkylating DNA damage

    No full text
    The alcohol aversion drug disulfiram (DSF) reacts and conjugates with the protein-bound nucleophilic cysteines and is known to elicit anticancer effects alone or improve the efficacy of many cancer drugs. We investigated the effects of DSF on human O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein and chemotherapy target that removes the mutagenic O(6)-akyl groups from guanines, and thus confers resistance to alkylating agents in brain tumors. We used DSF, copper-chelated DSF or CuCl(2)–DSF combination and found that all treatments inhibited the MGMT activity in two brain tumor cell lines in a rapid and dose-dependent manner. The drug treatments resulted in the loss of MGMT protein from tumor cells through the ubiquitin-proteasome pathway. Evidence showed that Cys145, a reactive cysteine, critical for DNA repair was the sole site of DSF modification in the MGMT protein. DSF was a weaker inhibitor of MGMT, compared with the established O(6)-benzylguanine; nevertheless, the 24–36h suppression of MGMT activity in cell cultures vastly increased the alkylation-induced DNA interstrand cross-linking, G(2)/M cell cycle blockade, cytotoxicity and the levels of apoptotic markers. Normal mice treated with DSF showed significantly attenuated levels of MGMT activity and protein in the liver and brain tissues. In nude mice bearing T98 glioblastoma xenografts, there was a preferential inhibition of tumor MGMT. Our studies demonstrate a strong and direct inhibition of MGMT by DSF and support the repurposing of this brain penetrating drug for glioma therapy. The findings also imply an increased risk for alkylation damage in alcoholic patients taking DSF
    corecore