17 research outputs found

    Constraining the Parameters of High-Dimensional Models with Active Learning

    Full text link
    Constraining the parameters of physical models with >510>5-10 parameters is a widespread problem in fields like particle physics and astronomy. The generation of data to explore this parameter space often requires large amounts of computational resources. The commonly used solution of reducing the number of relevant physical parameters hampers the generality of the results. In this paper we show that this problem can be alleviated by the use of active learning. We illustrate this with examples from high energy physics, a field where simulations are often expensive and parameter spaces are high-dimensional. We show that the active learning techniques query-by-committee and query-by-dropout-committee allow for the identification of model points in interesting regions of high-dimensional parameter spaces (e.g. around decision boundaries). This makes it possible to constrain model parameters more efficiently than is currently done with the most common sampling algorithms and to train better performing machine learning models on the same amount of data. Code implementing the experiments in this paper can be found on GitHub

    Phase Space Sampling and Inference from Weighted Events with Autoregressive Flows

    Get PDF
    We explore the use of autoregressive flows, a type of generative model with tractable likelihood, as a means of efficient generation of physical particle collider events. The usual maximum likelihood loss function is supplemented by an event weight, allowing for inference from event samples with variable, and even negative event weights. To illustrate the efficacy of the model, we perform experiments with leading-order top pair production events at an electron collider with importance sampling weights, and with next-to-leading-order top pair production events at the LHC that involve negative weights.Comment: 26 pages, 7 figure

    SPOT: Open Source framework for scientific data repository and interactive visualization

    Get PDF
    SPOT is an open source and free visual data analytics tool for multi-dimensional data-sets. Its web-based interface allows a quick analysis of complex data interactively. The operations on data such as aggregation and filtering are implemented. The generated charts are responsive and OpenGL supported. It follows FAIR principles to allow reuse and comparison of the published data-sets. The software also support PostgreSQL database for scalability

    The BSM-AI project: SUSY-AI - Generalizing LHC limits on Supersymmetry with Machine Learning

    Get PDF
    A key research question at the Large Hadron Collider (LHC) is the test of models of new physics. Testing if a particular parameter set of such a model is excluded by LHC data is a challenge: It requires the time consuming generation of scattering events, the simulation of the detector response, the event reconstruction, cross section calculations and analysis code to test against several hundred signal regions defined by the ATLAS and CMS experiment. In the BSM-AI project we attack this challenge with a new approach. Machine learning tools are thought to predict within a fraction of a millisecond if a model is excluded or not directly from the model parameters. A first example is SUSY-AI, trained on the phenomenological supersymmetric standard model (pMSSM). About 300,000 pMSSM model sets - each tested with 200 signal regions by ATLAS - have been used to train and validate SUSY-AI. The code is currently able to reproduce the ATLAS exclusion regions in 19 dimensions with an accuracy of at least 93 percent. It has been validated further within the constrained MSSM and a minimal natural supersymmetric model, again showing high accuracy. SUSY-AI and its future BSM derivatives will help to solve the problem of recasting LHC results for any model of new physics. SUSY-AI can be downloaded at http://susyai.hepforge.org/. An on-line interface to the program for quick testing purposes can be found at http://www.susy-ai.org/

    A comparison of optimisation algorithms for high-dimensional particle and astrophysics applications

    Get PDF
    Optimisation problems are ubiquitous in particle and astrophysics, and involve locating the optimum of a complicated function of many parameters that may be computationally expensive to evaluate. We describe a number of global optimisation algorithms that are not yet widely used in particle astrophysics, benchmark them against random sampling and existing techniques, and perform a detailed comparison of their performance on a range of test functions. These include four analytic test functions of varying dimensionality, and a realistic example derived from a recent global fit of weak-scale supersymmetry. Although the best algorithm to use depends on the function being investigated, we are able to present general conclusions about the relative merits of random sampling, Differential Evolution, Particle Swarm Optimisation, the Covariance Matrix Adaptation Evolution Strategy, Bayesian Optimisation, Grey Wolf Optimisation, and the PyGMO Artificial Bee Colony, Gaussian Particle Filter and Adaptive Memory Programming for Global Optimisation algorithms

    spot: Open Source framework for scientific data repository and interactive visualization

    Get PDF
    spot is an open source and free visual data analytics tool for multi-dimensional data-sets. Its web-based interface enables user to do a quick and interactive analysis of complex data. Various operations on data are implemented such as aggregation and filtering. The interface supports OpenGL acceleration, which makes the generated charts very responsive. In order to have scalability, the software also supports PostgreSQL as its database. It follows FAIR principles to allow reuse and comparison of the published data-sets. Keywords: Visualization, High-dimensional data, Theoretical models, Open data, FAIR, Particle physic

    Machine Learning and LHC Event Generation

    No full text
    International audienceFirst-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental theory predictions and interpretation. This review illustrates a wide range of applications of modern machine learning to event generation and simulation-based inference, including conceptional developments driven by the specific requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the speed and precision of forward simulations, handle the complexity of collision data, and enhance inference as an inverse simulation problem
    corecore