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Abstract: A key research question at the Large Hadron Collider is the test of mod-

els of new physics. Testing if a particular parameter set of such a model is excluded

by LHC data is a challenge: it requires time consuming generation of scattering

events, simulation of the detector response, event reconstruction, cross section calcu-

lations and analysis code to test against several hundred signal regions defined by the

ATLAS and CMS experiments. In the BSM-AI project we approach this challenge

with a new idea. A machine learning tool is devised to predict within a fraction

of a millisecond if a model is excluded or not directly from the model parameters.

A first example is SUSY-AI, trained on the phenomenological supersymmetric stan-

dard model (pMSSM). About 300 000 pMSSM model sets – each tested against 200

signal regions by ATLAS – have been used to train and validate SUSY-AI. The code

is currently able to reproduce the ATLAS exclusion regions in 19 dimensions with

an accuracy of at least 93%. It has been validated further within the constrained

MSSM and the minimal natural supersymmetric model, again showing high accuracy.

SUSY-AI and its future BSM derivatives will help to solve the problem of recasting

LHC results for any model of new physics.

SUSY-AI can be downloaded from http://susyai.hepforge.org/. An on-line in-

terface to the program for quick testing purposes can be found at http://www.

susy-ai.org/.
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1 Introduction

The ATLAS and CMS experiments at the Large Hadron Collider (LHC) have an-

alyzed the full Run 1 and a small fraction of the Run 2 data set and no evidence

of new physics has been found. In particular, there is no trace of supersymmetry

(SUSY) in conventional searches.

Both collaborations have explored intensively the impact of the null results in the

context of simplified models [1–3] as well as in complete models like the constrained
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minimal supersymmetric standard model (cMSSM) [1]. In addition, both experi-

ments have started to focus on natural SUSY scenarios addressing the emerging little

hierarchy problem [4, 5]. Finally, the ATLAS and CMS data sets were successfully

interpreted with sampling of the 19-dimensional phenomenological minimal super-

symmetric standard model (pMSSM) with specific priors, astrophysical constraints

and particle physics constraints from the Higgs physics, electroweak precision ob-

servables and direct LEP2 limits [6, 7].

The estimation of the number of expected signal events for a fixed point in the

SUSY parameter space can take from several minutes to hours in CPU time when

full detector simulations with GEANT are performed. In addition, it requires to

model all LHC SUSY searches. Therefore any attempt to use LHC data on models

like the pMSSM [8] with 19 dimensions is cumbersome.

In order to overcome this problem, several tools have been developed in the past few

years to recast the LHC results: for simplified models, Fastlim [9] and SModelS [10]

have been introduced. Both tools recast LHC searches on new physics scenarios

without relying on the slow Monte Carlo (MC) event generation and detector sim-

ulation. However, realistic models or scenarios with high-dimensional parameter

space do not fulfill the assumptions of simplified models and the full MC event gen-

eration is usually required. For this reason, tools like NLL-fast [11–13] as a fast cross

section calculator, the recasting projects CheckMATE [14, 15] and MadAnalysis [16]

based on Delphes [17], which is a fast detector simulator, were developed. However,

CheckMATE as well as MadAnalysis still require MC event generation and thus testing

model points still takes a few tens of minutes.

Machine learning (ML) is becoming a powerful tool for the analysis of complex and

large data sets, successfully assisting scientists in numerous fields of science and

technology. An example of this is the use of boosted decision trees [18] in the analyses

that led to the Higgs discovery at the LHC in 2012 [19, 20]. Moreover, recently there

have been applications to SUSY phenomenology in coverage studies [21], in the study

of the cMSSM [22] and in the reconstruction of the cMSSM parameters [23].

In this work we propose the use of ML methods to explore in depth LHC constraints

on the rich SUSY phenomenology. In particular, we investigate the use of classifiers

to predict whether a point in the pMSSM parameter space is excluded or not in

light of the results of the full set of ATLAS Run 1 data, avoiding time consuming

MC simulations. We show that decision tree classifiers like the Random Forest (RF)

algorithm perform very well in the pMSSM. Similar results have been obtained for

other MSSM realizations such as the natural SUSY model and the cMSSM. The

method discussed here allows for a quick analysis of large data sets and can be

coupled with recasting tools to resolve the remaining ambiguities by generating more
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training data. It could also be used in projects aiming at fits of the multidimensional

parameter space of the pMSSM or derived models, like e.g. [24, 25].

The paper is structured as follows. In Section 2 we recap the search for SUSY by

ATLAS in the context of the pMSSM. In Section 3 we briefly review the machine

learning techniques used in our analysis. In Section 4 we present a procedure of

generating the ML classifier. The validation and performance of the classifier are

described in Section 5: in the pMSSM framework in Section 5.1, for the natural

SUSY model in Section 5.2 and for the constrained MSSM in Section 5.3. Section 5.4

discusses limitations of the code. Finally, we summarize our findings in Section 6.

In Appendix A we discuss a comparison of different estimation methods and in

Appendix B we provide additional validation information.

2 The pMSSM and ATLAS SUSY searches

The MSSM with R-parity conservation is uniquely described by its particle spectrum

and the superpotential [26],

W = εij
[
(hL)mnH

i
1L

j
mEn + (hD)mnH

i
1Q

j
mDn − (hU)mnH

i
2Q

j
mUn − µH i

1H
j
2

]
, (2.1)

where εij is the antisymmetric SU(2) tensor with ε12 = +1. hL, hD, hU and µ denote

the lepton-, down-type and up-type Yukawa couplings and the Higgs superpotential

mass parameter, respectively. Generation indices are denoted by m and n. The chiral

superfields have the following gauge quantum numbers under the Standard Model

(SM) group G = SU(3)C × SU(2)L × U(1)Y :

L : (1, 2,−1/2), E : (1, 1, 1), Q : (3, 2, 1/6), U : (3̄, 1,−2/3),

D : (3, 1, 1/3), H1 : (1, 2,−1/2), H2 : (1, 2, 1/2), (2.2)

while the vector multiplets have the following charges under G:

g : (8, 1, 0), W : (1, 3, 0), B : (1, 1, 0). (2.3)

All kinetic terms and gauge interactions must be consistent with supersymmetry and

be invariant under G. Since the origin of supersymmetry breaking is unknown, one

approach to addressing this issue is avoiding explicit assumptions about a SUSY-

breaking mechanism. It is then common to write down the most general super-

symmetry breaking terms consistent with the gauge symmetry and the R-parity
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conservation [27],

Vsoft = m2
1|H1|2 +m2

2|H2|2 −m2
12(εijH

i
1H

j
2 + h.c.)

+ (M2
Q̃

)mnQ̃
i∗
mQ̃

i
n + (M2

Ũ
)mnŨ

i∗
m Ũ

i
n + (M2

D̃
)mnD̃

i∗
mD̃

i
n

+ (M2
L̃
)mnL̃

i∗
mL̃

i
n + (M2

Ẽ
)mnẼ

i∗
mẼ

i
n +

+ εij[(hLAL)mnH̃
i
1L̃

j
mẼn + (hDAD)mnH̃

i
1Q̃

j
mD̃n + (hUAU)mnH̃

i
2Q̃

j
mŨn + h.c.]

+
1

2
[M3g̃g̃ +M2W̃

aW̃ a +M1B̃B̃ + h.c.]. (2.4)

Here, M2
Q̃

, M2
Ũ

, M2
D̃

, M2
L̃

and M2
Ẽ

are 3× 3 Hermitian matrices in generation space,

(hLAL), (hDAD) and (hUAU) are complex 3 × 3 trilinear scalar couplings and m2
1,

m2
2 as well as m2

12 correspond to the SUSY-breaking Higgs masses. M1, M2 and M3

denote the U(1)Y , SU(2)L and SU(3)C gaugino masses, respectively. The fields with

a tilde are the supersymmetric partners of the corresponding SM field in the respec-

tive supermultiplet. Most new parameters of the MSSM are introduced by Eq. (2.4)

and a final count yields 105 genuine new parameters [28]. One can reduce the 105

MSSM parameters to 19 by imposing phenomenological constraints, which define the

so-called phenomenological MSSM (pMSSM) [8, 29]. In this scheme, one assumes

the following: (i) all the soft SUSY-breaking parameters are real, therefore the only

source of CP-violation is the CKM matrix; (ii) the matrices of the sfermion masses

and the trilinear couplings are diagonal, in order to avoid FCNCs at the tree-level;

(iii) first and second sfermion generation universality to avoid severe constraints, for

instance, from K0–K̄0 mixing.

The sfermion mass sector is described by the first and second generation universal

squark masses MQ̃1
≡ (MQ̃)nn, MŨ1

≡ (MŨ)nn and MD̃1
≡ (MD̃)nn for n = 1, 2, the

third generation squark masses MQ̃3
≡ (MQ̃)33, MŨ33

≡ (MŨ)33 and MD̃3
≡ (MD̃)33,

the first and second generation slepton mass ML̃1
≡ (ML̃)nn, MẼ1

≡ (MẼ)nn for

n = 1, 2 and the third generation slepton masses ML̃3
≡ (ML̃)33 and MẼ3

≡ (MẼ)33.

The trilinear couplings of the sfermions enter in the off-diagonal parts of the sfermion

mass matrices. Since these entries are proportional to the Yukawa couplings of

the respective fermions, we can approximate the trilinear couplings associated with

the first and second generation fermions to be zero. Instead, the third generation

trilinear couplings are described by the parameters At ≡ (AU)33, Ab ≡ (AD)33 and

Aτ ≡ (AL)33.

After the application of the electroweak symmetry breaking conditions, the Higgs

sector can be fully described by the ratio of the Higgs vacuum expectation values,

tan β, and the soft SUSY-breaking Higgs mass parameters m2
i . Instead of the Higgs

masses, we choose to use the higgsino mass parameter µ and the mass of the pseu-

doscalar Higgs, mA, as input parameters, as they are more directly related to the

phenomenology of the model.
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Reference Final State Category

[30] 0 lepton + 2–6 jets + /ET Inclusive

[31] 0 lepton + 7–10 jets + /ET

[32] 1 lepton + jets + /ET

[33] τ(τ/`) + jets + /ET

[34] SS/3 lepton + jets + /ET

[35] b-jets + 0/1 lepton + /ET

[36] monojet

[37] 0 lepton stop search Third generation

[38] 1 lepton stop search squarks

[39] 2 lepton stop search

[40] monojet search

[41] stop search with Z in final state

[42] 2b-jets sbottom search

[4] asymmetric stop search

[43] 1 lepton plus Higgs final state Electroweak

[44] dilepton final state

[45] 2τ final state

[46] trilepton final state

[47] four-lepton final state

[48] disappearing track

[49, 50] Long-lived particle search Other

[51] H/A→ ττ search

Table 1: The experimental analyses used in the ATLAS study [6]. The middle

column denotes the final state for which the analysis is optimized, and the third

column shows the target scenario of this analysis.

The final ingredients of our model are the three gaugino masses: the bino mass M1,

the wino mass M2, and the gluino mass M3. The above parameters describe the 19-

dimensional realization of the pMSSM, which encapsulates all phenomenologically

relevant features of the full model that are of interest for dark matter and collider

experiments.

The ATLAS study [6] considered 22 separate ATLAS analyses of the Run 1 summa-

rized in Table 1. These studies cover a large number of different final-state topolo-

gies, disappearing tracks, long-lived charged particles as well as the search for heavy

MSSM Higgs bosons. Reference [6] combines all searches and the corresponding sig-

nal regions in order to derive strict constraints on the pMSSM. For this purpose,

5× 108 model points were sampled within the ranges shown in Table 2. The model

points had to satisfy preselection cuts following closely the procedure described in
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Parameter Description Scanned range

mL̃1
1st/2nd gen. SU(2) doublet soft breaking slepton mass [90 GeV, 4 TeV]

mẼ1
1st/2nd gen. SU(2) singlet soft breaking slepton mass [90 GeV, 4 TeV]

mL̃3
3rd gen. SU(2) doublet soft breaking slepton mass [90 GeV, 4 TeV]

mẼ3
3rd gen. SU(2) singlet soft breaking slepton mass [90 GeV, 4 TeV]

mQ̃1
1st/2nd gen. SU(2) doublet soft breaking squark mass [200 GeV, 4 TeV]

mŨ1
1st/2nd gen. SU(2) singlet soft breaking squark mass [200 GeV, 4 TeV]

mD̃1
1st/2nd gen. SU(2) singlet soft breaking squark mass [200 GeV, 4 TeV]

mQ̃3
3rd gen. SU(2) doublet soft breaking squark mass [100 GeV, 4 TeV]

mŨ3
3rd gen. SU(2) singlet soft breaking squark mass [100 GeV, 4 TeV]

mD̃3
3rd gen. SU(2) singlet soft breaking squark mass [100 GeV, 4 TeV]

At Stop trilinear coupling [−8 TeV, 8 TeV]

Ab Sbottom trilinear coupling [−4 TeV, 4 TeV]

Aτ Stau trilinear coupling [−4 TeV, 4 TeV]

|µ| Higgsino mass parameter [80 GeV, 4 TeV]

|M1| Bino mass parameter [0 TeV, 4 TeV]

|M2| Wino mass parameter [70 GeV, 4 TeV]

M3 Gluino mass parameter [200 GeV, 4 TeV]

MA Pseudoscalar Higgs mass [100 GeV, 4 TeV]

tan β Ratio of vacuum expectation values [1, 60]

Table 2: Variable input parameters of the ATLAS pMSSM scan and the range over

which these parameters are scanned.

Ref. [52]. All selected points had to pass the precision electroweak and flavor con-

straints summarized in Table 3. These include the electroweak parameter ∆ρ [53],

the branching ratios for rare B decays [54–57], the SUSY contribution to the muon

anomalous magnetic moment ∆(g − 2)µ [58, 59], and the Z boson width [60] and

LEP limits on the production of SUSY particles [61]. Furthermore, thermally pro-

duced dark matter relic density is required to be at or below the Planck measured

value [62]. Finally, the constraint on the Higgs boson mass [63, 64] was applied. Af-

ter this preselection 310 327 model points remained, for which the production cross

sections for all final states were computed.

All models with production cross sections larger than a threshold were further pro-

cessed. Matched truth level MC event samples with up to one additional parton

in the matrix element were generated and efficiency factors1 were determined for

1The efficiency factor tells the number of Monte Carlo events passing the experimental selections

relative to the full MC sample size for each parameter point. Since the number of simulated MC

events typically exceeds the nominal number by a factor of a few (to reduce statistical fluctuations)

the final number of expected events in each signal region is obtained by multiplying the efficiency,
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Parameter Minimum Value Maximum Value

∆ρ −0.0005 0.0017

∆(g − 2)µ −17.7× 10−10 43.8× 10−10

BR(b→ sγ) 2.69× 10−4 3.87× 10−4

BR(Bs → µ+µ−) 1.6× 10−9 4.2× 10−9

BR(B+ → τ+ντ ) 66× 10−6 161× 10−6

Ωχ̃0
1
h2 − 0.1208

Γinvisible(Z) − 2 MeV

Masses of charged sparticles 100 GeV −
mχ̃±

1
103 GeV −

mh 124 GeV 128 GeV

Table 3: Preselection cuts for the pMSSM benchmark points [6].

each signal region and the final yield was determined. For points that could not be

classified with at least 95% certainty using this method, a fast detector simulation

based on GEANT4 was performed [6]. The exclusion of the model points was then

determined using 22 different analyses, taking into account almost 200 signal regions

covering a large spectrum of final-state signatures. The exclusion of a model point is

decided by the analysis with the best expected sensitivity. We follow this approach

here.

3 Machine learning and classification

In terms of ML the problem considered in this paper is a classification problem and

there are several methods for addressing it. We will focus on decision tree classifiers

and in particular on the random forest classifier [65], which was found to give the

best results in the present case, compared to other ML methods like AdaBoost [66],

k-Nearest Neighbors [67] and Support Vector Machines [68], among others.

In the following we present an introduction to decision trees and the random forest

classifier, aiming at providing a basic understanding of the algorithms. For more

complete texts on the subject, the reader is referred to Refs. [69] and [70]. A more

detailed and technical description of the Random Forest algorithm can be found in

Ref. [65].

integrated luminosity and cross section.
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Figure 1: Graphical representation of a sample decision tree.

3.1 Decision trees and random forest

In a classification problem the goal is to classify a parameter set (attribute set),

~y = {y1, ..., yN}, by assigning it a class label C, corresponding to the class it belongs

to. The procedure starts with training a classifier by presenting parameter sets and

the corresponding class labels, in order to learn patterns that the input data follow.

Though this basic principle is the same for all classification algorithms, the specific

implementation differs depending on the particular problem.

Decision trees are often used as a method to approach a classification problem. An

example of a decision tree is shown in Figure 1. In this example, the tree classifies a

2-dimensional attribute set ~y = (y1, y2) as either class A or class B.

A decision tree consists of multiple nodes. Every node specifies a test performed on

the attribute set arriving at that node. The result of this test determines to which

node the attribute set is sent next. In this way, the attribute set moves down the

tree. This process is repeated until the final leaf node is reached, i.e. the node with

no further nodes connected to it. At the final node no test is performed, but a class

label is assigned to the set, specifying its class according to the classifier. The depth

of the tree is the maximum number of nodes, as shown in Figure 1.

Because the tree works on the entire parameter space, every test performed in each

node can also be interpreted as a cut in this space. By creating a tree with multiple
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nodes, the parameter space is split into disjunct regions, each having borders defined

by the cuts in the root and internal nodes, and a classification defined by a leaf node.

One of the drawbacks of decision trees is that they are prone to overtraining : they

have a tendency to learn every single data point as an expression of a true feature of

the underlying pattern, yielding decision boundaries with more detailed features than

actually present in the underlying pattern. Although this overtraining may cause a

better prediction when classifying the training data, such classifiers generally perform

poorly on new data sets.

A simple, yet crude method to fix this problem is known as pruning : training the

entire tree, but cutting away all nodes beyond a certain maximum depth. This

effectively reduces the amount of details the tree can distinguish in the learned data

pattern, since fewer cuts are made in the parameter space. With a maximum depth

set to a certain value, classification will not be perfect and mistakes will be made in

predictions for the training. Lone data points in sparse regions or individual data

points with a classification different from a classification of the data points around it

will therefore be learned less efficiently, thus reducing their influence on the trained

classifier.

In the Random Forest algorithm, multiple decision trees are combined into a single

classifier, creating an ensemble classifier. Classification of an attribute set is then

decided by a majority vote: the ratio of trees that predict class C and the total

number of trees is taken as a measure of probability the attribute set belongs to class

C. The class with the highest score is assigned to the attribute set. This method

averages out fluctuations that cause overtraining in individual trees.

Another method to overcome overtraining is to implement a random attribute selec-

tion, meaning that at each node the cuts are applied only to a subset of attributes.

In a single decision tree this would introduce a massive error in predictions, but since

the random forest is an ensemble classifier, its predictions actually improve.

In addition to these two methods, random forests also use bagging to reduce over-

training even more. In bagging, each decision tree is trained on a random selection of

n model points out of N available in the training set. The sampling is done with re-

placement, meaning a single model point can be selected multiple times. In bagging,

n is conventionally chosen to be equal to the total amount of model points available,

which means each tree is trained on approximately 63% of points for large N [71]. By

using this procedure, the contribution of a single data point to the learned pattern

is reduced, making the classifier more focused on the collective patterns.

Overtraining of a classifier is difficult to express quantitatively, but it can be tested

qualitatively using an independent test set, with which one can estimate the fraction

of incorrectly predicted data points for general datasets (i.e. datasets other than the
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training set). This fraction is called the generalization error. A high generalization

error is a possible indicator of overtraining. Normally the check on this error is per-

formed by splitting the available data into training and testing subsets. The training

set is used to train the classifier, while the testing set is used to test the predictions

of the algorithm. This splitting of the dataset is, however, not the procedure we

followed here. Since random forests employ bagging, a single data point is used only

in training of a part of the trees. Testing of the algorithm can thus be done by letting

all data points be predicted by those trees that did not use a particular data point in

their training. As with a test set, one can now obtain a fraction incorrectly predicted

data points, and thus estimate the generalization error. This method is called out-of-

bag estimation (OOB). The obvious advantage of this procedure is that all the data

can be used in training without the need to split the sample into the training and

testing sets, hence improving the general prediction quality of the algorithm. It was

shown in Ref. [71] that this method provides an error estimate as good as train-test

split method; see Appendix A for a direct comparison in our case.

Though random forest is in general not very susceptible to overtraining due to the

bagging procedure, its performance depends on the number of trees it contains: the

more trees, the less overtraining will occur, because predictions are averaged over

many individual trees thus reducing undesired fluctuations. The number of decision

trees inside the forest is a configuration parameter that has to be set before starting a

training, as are the maximum depth of the decision trees and the number of features

used in the random attribute selection at each node for example.

In this work we used the RF implementation in the scikit-learn Python pack-

age [72] (version 0.17.1).

3.2 Performance of a classifier

Given a classifier and a testing set, there are four possible outcomes in case of binary

classification (i.e. “positive” and “negative”). If the true classification is positive

and the prediction by the classifier is positive, then the attribute set is counted as

a true positive (TP). If the classifier classifies the set as negative, it is counted as

false negative (FN). If, on the contrary, the attribute set is truly negative and it is

classified as negative, it is counted as a true negative (TN) and if it is classified as

positive, it is counted as a false positive (FP).

With this, one can define the true positive rate (TPR) as the ratio of the positives

correctly classified and the actual positive data points. The false positive rate (FPR)

is the ratio of negatives incorrectly classified and the total truly negative data points.

A receiver operating characteristic (ROC) graph is a two-dimensional plot in which

the TPR is plotted on the vertical axis and the FPR is plotted on the horizontal
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Parameter Block No. Parameter Block No.

M1 MSOFT 1 mŨ3
MSOFT 46

M2 MSOFT 2 mD̃1
MSOFT 47

M3 MSOFT 3 mD̃3
MSOFT 49

mL̃1
MSOFT 31 At AU 3,3

mL̃3
MSOFT 33 Ab AD 3,3

mẼ1
MSOFT 34 Aτ AE 3,3

mẼ3
MSOFT 36 µ HMIX 1

mQ̃1
MSOFT 41 M2

A HMIX 4

mQ̃3
MSOFT 43 tan β HMIX 3

mŨ1
MSOFT 44

Table 4: Variables used for training in the pMSSM. The variables are identified

according to the SLHA-1 standard [74], given in order used by SUSY-AI.

axis.2 The ROC graph shows a relative trade-off between benefits (true positives)

and costs (false positives). Every discrete classifier produces an (FPR, TPR) pair

for a specified cut on the classifier output corresponding to a single point in the

ROC space. The lower left point (0, 0) represents a strategy of never getting a pos-

itive classification; such a classifier commits no false positive errors but also does

not predict true positives. The opposite strategy, of unconditionally assigning pos-

itive classifications, is represented by the upper right point (1, 1). The point (0, 1)

represents the perfect classification.

The ROC curve is a two-dimensional representation of a classifier performance.

A common method used to compare classifiers is the area under the ROC curve

(AUC) [73]. Its value is always between 0 and 1. Because a random classification

produces a diagonal line between (0, 0) and (1, 1), which corresponds to AUC = 0.5,

no realistic classifier should have AUC less than 0.5. A perfect classifier has a AUC

equal to 1. Each point on the curve corresponds to a different choice of the classifier

output value that separates data points classified as allowed or excluded.

4 Training of SUSY-AI

The classifier was trained using the data points generated by ATLAS as discussed in

Section 2. The set of parameters used in this classification task is shown in Table 4.

We follow here the SLHA-1 standard [74] and provide the respective block names and

parameter numbers. All input variables are defined at the SUSY scale Q =
√
mt̃1mt̃2 .

2TPR and FPR may also be called sensitivity and specificity in the literature.
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The class labels were generated by the exclusion analysis performed in Ref. [6]. From

the 22 analyses that were used by ATLAS, the exclusion of each point is decided by

means of the signal region with the best expected sensitivity at a given point. To

excluded data points we assign a class label 0, to allowed data points a class label 1.

Note that the current version only uses the combined classification, without making

a distinction which particular analysis excluded a given parameter point.

In order to find an optimal configuration of the classifier, we used a grid search as

an automated investigation method, which varies the hyperparameters (number of

trees, maximal depth, number of features at each node) to find a configuration with

a maximal value for a figure of merit, which is the OOB score in our case. The

result of this search yielded the following parameters: 900 decision trees, a maximal

depth of 30 nodes and a maximum number of features considered at each node of

12. The training was performed including the out-of-bag estimation technique for

the creation of an estimate for the generalization accuracy.

Figure 2 shows a histogram of all data points with a classification prediction deter-

mined by the classifier. The horizontal axis shows the classifier output while the

vertical axis shows a number of points for a given output with a true label 1 (green

histogram) or 0 (red histogram). From the figure, one can conclude that although

a vast majority of the points is classified correctly (the allowed points pile-up at a

classifier output of 1.0, while the excluded points pile-up at a classifier output of

0.0), some of the points fall into the categories of false positives or false negatives. A

perfect classification is therefore not possible, and one has to make cuts in this dia-

gram to make the classification binary. Setting the cut at 0.5 would mean the truly

excluded data points with a value for the output of 0.5 or more would be classified

as allowed, while the truly allowed data points with a classifier output of 0.5 or less

would be classified as excluded.

The desired location of the cut depends on the required properties of the classifier.

For example, when one would like to avoid false positives the preferred value should

be close to 1.0, while the value close to 0.0 will result in many true positive points

being classified as positive for a price of many true negative points wrongly classified

as positives. Typically, the neutral choice would be at a point of intersection of red

and green histograms, in our example at 0.535. It is assumed that newly added

points will follow the same distribution as a function of the classifier output.

Another possibility, which we adopt here, is to plot the ratio of the majority class

and the total number of points for each bin, as showed in Figure 3. This provides a

frequentist confidence level that a point with a given classifier output is truly allowed

or excluded. The horizontal lines for typically used confidence levels are also shown

in the figure.
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Figure 2: Distribution of the number of true allowed or excluded points by

ATLAS [6] as a function of the classifier output.

Figure 3: Confidence level that the classification is correct, as defined in the text.

The horizontal lines indicate specific confidence levels.
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(a) (b)

Figure 4: (a) ROC curves for different minimum CLs following from analysis of

Figure 3. Note that only the upper left corner of the full ROC curve is shown.

(b) ROCs for SUSY-AI and 20 decision trees (ROCs overlap here). The decision

trees model educated manual cuts on the dataset. The square marker indicates the

location of SUSY-AI performance without a cut on CL, while discs denote different

decision trees.

Using this confidence level (CL) method, one can use the trained classifier to provide

both a classification and a measure of confidence in that classification. By demanding

a specific CL (and so the probability of the wrong classification) one determines the

classifier output, which can be read from Figure 3. For example, for a confidence level

of 99%, the classifier output for a given point should be below 0.05 or above 0.95,

while for a confidence level of 95% the predicted probabilities below 0.133 or above

0.9 are sufficient. Trimming the dataset using the limits determined by this method

yields better results for the classification, but also implies that further analyses have

to be done on the points that were cut away. The improved quality of classification

can be seen by the increasing AUC for higher confidence levels in the ROC curve

in Figure 4a. This plot was generated by varying the decision cut on the classifier

output between 0.0 and 1.0 and plotting the result as a function of FPR vs TPR for

a given CL cut.

In order to demonstrate how SUSY-AI outperforms a simple decision tree we make a

comparison of both methods in Figure 4b, which shows ROC curves for both of them.

We study here O(20) simple decision trees (with a maximum depth of 5) that model

a set of simple cuts one would put on the data set manually. The decision trees were

trained with a train:test split dataset according to a ratio 75:25, cf. Appendix A.

An example of a decision tree trained in this way can be seen in Figure 5. For the

purpose of this exercise, the cut of 0.5 was imposed on the classifier output. The

– 14 –



Figure 5: Example of a decision tree modeling educated manual cuts, trained

with a 75:25 ratio of training and testing data. The figure has been created with

GraphViz [75]. The information shown in the nodes are, respectively: a cut that is

made in the parameter space (line 1), an impurity measure which is minimized in the

training (line 2), a number of model points in the node (line 3), the distribution of

model points over the classes [excluded, allowed] (line 4) and a label of the majority

class (line 5).

square marker in the figure shows the actual location of SUSY-AI on the RF ROC

curve. Clearly, for any choice of FPR SUSY-AI outperforms the simple decision

trees. The difference is particularly visible once we take low FPR. Note that the

SUSY-AI ROC curve plotted here does not take into account CL cuts discussed in

the previous paragraph. Once this taken into account the advantage of the package

increases even further.

5 Performance tests of SUSY-AI

In this section we study the performance of SUSY-AI on a sample that was initially

used for its training and on two specific SUSY models. The first one is a natural

SUSY model that focuses on only several chosen parameters (with the rest effectively

decoupled) of the 19-dimensional pMSSM parameter space, but fulfills almost all

the constraints of the original sample. The second one is the constrained MSSM

defined by high-scale parameters. It generally contains all particles from the pMSSM

spectrum, but with the constraints from dark matter relic abundance and Higgs

physics being relaxed. In the last subsection we discuss validation performance on
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two additional ad-hoc models and provide a general discussion of SUSY-AI validation

and applicability for models not specified in this paper, which users could try on their

own.

5.1 Performance in the 19-dimensional pMSSM

To validate the performance of SUSY-AI, all possible two-dimensional projections of

the 19-dimensional pMSSM parameter space have been searched for differences be-

tween the classification by SUSY-AI and ATLAS. Figures 6 and 7 show as an example

the classification in the M1–M2 and mg̃–mχ̃0
1

plane. Various other classification plots

are shown in Figures 13–20 in Appendix B.

One could expect that misclassified points are primarily located at a border of allowed

and excluded regions of the 19-dimensional parameter space. To test this hypothesis,

we bin every possible two-dimensional projections of parameter space and calculate

the ratio of allowed points to the total number of points in each bin. We compare

the true classification and out-of-bag prediction.3 The fraction of misclassified points

can be plotted in the same manner and provides information on prediction errors in

different parts of parameter space; see Figures 6 and 7.

The classification has been studied for different cases: including all points, including

only points within the 95% CL limit and for points within the 99% CL limit, as

shown in the different rows of Figures 6 and 7. As expected, the difference between

the original classification and the predicted classification becomes smaller when de-

manding a higher confidence level. Figures 13–20 in Appendix B further support the

hypothesis that the misclassified points indeed gather around decision boundaries in

the 19-dimensional parameter space.

Without a confidence level cut, SUSY-AI classifies 93.2% of the data correctly at the

working point with the classifier output cut of 0.535. This can be compared with

the performance of the simple decision tree in Figure 4b, which is markedly worse

for any value of the false positive rate. Comparing SUSY-AI at the working point,

FPRSUSY-AI = 0.112, TPRSUSY-AI = 0.960, with the decision tree at the same FPR

we obtain just TPRDT = 0.647. Alternatively, looking at true and false negatives

we have: FNRSUSY-AI = 0.089, TNRSUSY-AI = 0.947, while the decision tree at the

same FNR we obtain just TNRDT = 0.670, and at the same TNR: TNRDT = 0.660.

The last result is particularly worth noting as it means that for a decision tree that

correctly excludes 95% of points the rate of incorrect exclusions is at 66%. With

the confidence level cut of 95%, corresponding to 70% of the full dataset, the correct

3A comparison of out-of-bag estimation and the validation via splitting of data in a training and

testing set is discussed in Appendix A.
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classification by the RF is increased to 99.0%. Finally the confidence level cut of 99%,

corresponding to 50% of the full dataset, yields a correct classification of 99.7%.

One might think that the volume of the 19-dimensional parameter space is so large

that the data points become too sparse to make reliable classification possible. Our

results show otherwise. The first reason for this is that the size of the parameter space

in the pMSSM is inherently reduced by sampling restrictions. Of the 500 · 106 model

points sampled, only 3 · 105 survived restrictions on the Higgs mass, non-existence

of tachyons and color breaking minima, correct electroweak symmetry breaking etc.

This decreases the number of points needed for training since the volume of the

valid and relevant parameter space is reduced. Moreover, only the part of parameter

space with a complicated decision boundary shape (< 4 TeV) has to be sampled.

Furthermore, we want to stress that the DM constraint already excludes benchmark

points with an LSP different from the lightest neutralino and thus a non-trivial cut

into parameter space is performed. Moreover, the majority of the bino-like LSP

points are concentrated with masses below 100 GeV and in particular at the Z and

Higgs boson pole, have a higgsino or wino NLSP for co-annihilation or have colored

scalars (usually stops) or staus as the NLSP candidate. Usually, benchmark points

with a wino and higgsino LSP are constrained to masses below 1.5 TeV.

Secondly, the experimental constraints on the pMSSM significantly reduce the al-

lowed SUSY parameter space. Only less than 1 out of 100 randomly sampled SUSY

parameter points were selected after the constraints applied by ATLAS. The 300 000

training points, therefore, represent a much larger set of randomly selected param-

eters. The classifier remains valid nevertheless, since one only needs to sample the

part of parameter space where the decision boundary shape will change as a function

of a particular feature ‘X’. This happens in the low-energy range therefore justifies

the upper cut of < 4 TeV. Another relevant issue here is the coverage of the com-

pressed spectrum region where one might expect poor performance. The ATLAS

scan, however, covers fairly well compressed spectra and provides training data also

in these regions.

The final reason is that not all 19 dimensions of the pMSSM are phenomenologically

relevant. For example, the production of gluinos and squarks, which is the main

search channel at the LHC, depends mainly on the squark masses, the gluino mass,

and the electroweakino mass parameters M1, M2 and µ, while the trilinear couplings

and tan β only have a small impact on the predictions.

This can be exposed by investigating features’ importance. Every node in a decision

tree is a condition on a single feature and splits the dataset into two parts. The

locally optimal condition is chosen based on a measure called impurity. In our case,
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Parameter Importance Parameter Importance

mL1 0.021 M1 0.058

me1 0.019 M2 0.164

mL3 0.014 mu 0.130

me3 0.014 M3 0.242

mQ1 0.079 At 0.013

mu1 0.066 Ab 0.012

md1 0.037 Atau 0.012

mQ3 0.026 mA2 0.031

mu3 0.018 tanbeta 0.019

md3 0.026

Table 5: Features’ importance for the trained RF classifier.

we implement the Gini impurity which is given by

I =
C∑
i=1

fi · (1− fi) = 1−
C∑
i=1

f 2
i , (5.1)

where C is the total number of classes and fi the fraction of class i in this node. The

smaller the Gini impurity, the purer the dataset at the given node. Minimizing this

value during training guarantees that model points will be split according to their

class label.

After training a tree, it can be computed for that tree how much each feature j

decreases the weighted impurity: the impurity change weighted with the fraction of

model points it influences, summed over all nodes making a split on feature j in that

tree: ∑
k∈nodes splitting j

model points at node k

total number of model points
· impurity change. (5.2)

This weighted impurity change for each feature can be averaged for the forest and

the features can be ranked according to this measure. The result of this exercise for

SUSY-AI is shown in Table 5, where the features’ importance are listed.

One can see that a subset of all features have a significantly higher contribution

to the final prediction by SUSY-AI. We investigated a reduction of the number of

features taken as an input by SUSY-AI and the reduction yielded classifiers with

systematically lower quality.

From the above discussion one can see that the effective dimensionality of the problem

is significantly reduced. With this in mind let us make several remarks about the

uncertainty of a decision boundary. Firstly, we note that it does not scale with 1/N ,

where N is the number of points in each dimension. The error actually scales with
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0.5 ·V/(N + 1) where V is the allowed volume. Let us assume V = 1 and four points

in the unit box placed at 0.2, 0.4, 0.6, 0.8 (a grid spacing) and that the first two

points are excluded. The algorithm would guess the limit to be at 0.5 (i.e. between

points 2 and 3). The uncertainty of this guess is only 0.1 and not 0.25 even for a

grid spacing of points. In a 9-dimensional space this means 49 = 262144 points.

Taking into account that some of the features are relatively unimportant and with

the constraints on the parameter space that reduce the effective volume (e.g. the

physical vacuum, a viable DM candidate, etc.), it becomes plausible that our sample

provides sufficient coverage of the parameter space.

In addition, the separation of the excluded and allowed regions close to the decision

boundary becomes better defined when applying confidence level cuts that remove

model points not classified with a high enough certainty. We note that in the future

the probability for correct classification by SUSY-AI will be improved with more

training data.

5.2 Performance in a pMSSM submodel: the 6-dimensional natural SUSY

model

In order to further test the performance of the trained classifier, a cross-check has

been performed on two models: the 6-dimensional natural SUSY [76] and the 5-

dimensional CMSSM. The natural SUSY sample is contained within the limits spec-

ified in Table 2, however, one might worry that this specific part of the parameter

space was too sparsely sampled. We show here that nevertheless the prediction of

SUSY-AI is reliable. On the other hand, the CMSSM sample relaxes some of the

constraints of the training sample, like the Higgs mass or dark matter abundance.

Still, we demonstrate the exclusion limits are correctly reproduced.

In Ref. [76] limits were presented on the parameter space of the natural supersym-

metry based on Run 1 SUSY searches. The authors considered 22000 model points

in a 6-dimensional parameter space listed in Table 6. The mass spectra consist of

higgsinos as the lightest supersymmetric particle, as well as light left-handed stops

and sbottoms, right-handed stops and gluinos, while assuming a SM-like Higgs bo-

son. All remaining supersymmetric particles and supersymmetric Higgs bosons were

decoupled. All benchmark scenarios have to satisfy low-energy limits such as the ρ

parameter [77], LEP2 constraints [78–80] and have to be consistent with the mea-

sured dark matter relic density [62], i.e. the total cold dark matter energy density

is used as an upper limit on the LSP abundance. However, no constraints from

b-physics experiments have been imposed. In summary, our natural SUSY sample

fulfills the ATLAS pMSSM constraints, except the b-physics limits.

– 21 –



Parameter Description Scanned Range

mQ̃3
3rd generation SU(2) doublet soft breaking squark mass [0.1 TeV, 1.5 TeV]

mŨ3
3rd generation SU(2) singlet soft breaking squark mass [0.1 TeV, 1.5 TeV]

M3 Gluino mass parameter [0.1 TeV, 3.0 TeV]

At Stop trilinear coupling [−3.0 TeV, 3.0 TeV]

µ Higgsino mass parameter [0.1 TeV, 0.5 TeV]

tan β Ratio of vacuum expectation values [1, 20]

Table 6: Input parameters of the natural SUSY scenario of Ref. [76], and the range

over which these parameters were scanned.

Reference Final State L [fb−1] #SR

1308.2631 (ATLAS) [42] 0` + 2b-jets + /ET 20.1 6

1403.4853 (ATLAS) [39] 2` + /ET 20.3 12

1404.2500 (ATLAS) [34] SS 2` or 3` 20.3 5

1407.0583 (ATLAS) [38] 1` + (b)-jets + /ET 20.0 27

1407.0608 (ATLAS) [40] monojet + /ET 20.3 3

1303.2985 (CMS) [84] αT + b-jets 11.7 59

ATLAS-CONF-2012-104 [85] 1` + ≥4 jets + /ET 5.8 2

ATLAS-CONF-2013-024 [86] 0` + 6 (2b)-jets + /ET 20.5 3

ATLAS-CONF-2013-047 [87] 0` + 2–6 jets+/ET 20.3 10

ATLAS-CONF-2013-061 [88] 0–1` + ≥3b-jets + /ET 20.1 9

ATLAS-CONF-2013-062 [89] 1–2` + 3–6 jets + /ET 20.0 19

CMS-SUS-13-016 [90] OS 2` + ≥3b-jets 19.7 1

Table 7: The experimental analyses used in Ref. [76]. The ATLAS-CONF and CMS-

SUS papers are only available as conference proceedings, the others are given by their

arXiv number. The middle column corresponds to the final state of the respective

search, and the third column shows the total integrated luminosity employed in this

analysis. The fourth column gives the total number of signal regions.

The event generation was performed with Pythia 8.185 [81] as well as with Madgraph

[82] interfaced with the shower generator Pythia 6.4 [83] for matched event sam-

ples. The truth level MC events were then passed over to CheckMATE [14, 15]. It

consists of a simulation of the detector response with a modified Delphes [17] where

the settings have been re-tuned to resemble the responses of the ATLAS detector.

Each model point was tested against a number of natural SUSY and inclusive SUSY

searches with a total number of 156 signal regions, including two CMS searches,

summarized in Table 7. CheckMATE determines the signal region with the highest

expected sensitivity, as well as the selection efficiency for this particular signal region.

Finally, CheckMATE determines if the model point is excluded at the 95% CL, using
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the CLS method [91] by evaluating the ratio,

r ≡ S − 1.96 ·∆S
S95
exp.

, (5.3)

where S is the number of signal events, ∆S denotes its theoretical uncertainty, and

S95
exp. is the experimentally determined 95% confidence level limit on the signal. A

statistical error due to the finite MC sample, i.e. ∆S =
√
S, as well as a 10% sys-

tematic error has been assumed. The parameter r is only computed for the best

expected signal region, in order to avoid exclusions due to downward fluctuations of

the experimental data, which is expected considering the large number of signal re-

gions. CheckMATE does not statistically combine signal regions nor combine different

analyses. It considers a parameter point to be excluded at 95% CL if r defined in

Eq. (5.3) exceeds 1.0. However, the authors followed a more conservative approach.

If the r value was below 0.67 the point was considered allowed; if it was above 1.5 it

was excluded. All other points were removed from the analysis.

Figure 8a shows the exclusion limit in the gluino–LSP-mass plane assuming mt̃1 ≥
600 GeV from Ref. [76]. Here, the red (blue) shaded areas indicate excluded (allowed)

regions of parameter space, while the fraction of allowed points is shown by the color

intensity according to a color bar. The limit is essentially driven by the production

of gluino pairs. Hence, a clear separation between the allowed and excluded regions

can be observed in the figure.

Figure 8b shows the result from the prediction with the 95% CL cut. The classi-

fication by SUSY-AI reproduces the results from Ref. [76] very well. It produces

slightly better limits, since the classifier was trained using more recent searches and

a larger number of analyses, showing that the procedure of CheckMATE is conserva-

tive. Figure 8c shows the same plot using the pMSSM training data and its true

classification. This confirms that the location of the decision boundary in Figure 8b

is indeed learned from the training data and not an artifact of the natural SUSY

data sample.

Again a series of ROC curves were generated. These are plotted in Figure 9. A

large part of the model points is classified correctly; however, there remains a small

number of false negatives (assuming the CheckMATE classification to be correct).

This can be deduced from the spacing between the TPR = 1.0 line and the ROC

curves in Figure 9. Nevertheless, the pMSSM-trained classifier provides a reliable

classification, especially when a confidence level cut is applied, resulting in AUC of

about 0.997 for the full data set.
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(a) True classification from Ref. [76]. (b) 95% CL SUSY-AI classification result.

(c) pMSSM data used for training.

Figure 8: Results of testing a natural SUSY scenario with the trained classifier in

the higgsino LSP and gluino mass plane assuming stop masses larger than 600 GeV.

The colors indicate the probability that a particular point is not excluded. For

reference panel (c) shows the training data in the same plane as panels (a) and (b)

after applying a constraint on the stop mass to filter out data points mimicking

natural SUSY. The dashed bins contain no data points. The dashed stripe in panels

(a) and (b) corresponds to the points that were outside the 95% CL boundaries of

CheckMATE, see text.

5.3 Performance in a pMSSM submodel: the 5-dimensional constrained

MSSM

A second test was performed on the constrained MSSM (cMSSM or mSUGRA) [92–

94]. The MSSM with a particularly popular choice of the universal boundary condi-

tions for the soft breaking terms at the grand unification scale is called the cMSSM.

It is defined in terms of five parameters: common scalar (m0), gaugino (m1/2) and
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Figure 9: Several ROCs for the pMSSM-trained classifier with varying CL cuts

when tested on the natural SUSY sample.

trilinear (A0) mass parameters (all specified at the GUT scale) plus the ratio tan β

of Higgs vacuum expectation values and sign(µ), where µ is the Higgs/higgsino mass

parameter whose square is computed from the conditions of radiative electroweak

symmetry breaking. For this model, ATLAS has set constraints shown in Figure

10a [1]. Using SuSpect [95], the same slice of parameter space was sampled ran-

domly following an uniform distribution over parameter space and classified using

the tested classifier. In this scan, we set tan β = 30, A0 = 2m1/2 and the sign of

µ to +1 in order to facilitate the comparison with ATLAS results. In this search

no further constraints were imposed, for example on the Higgs mass or from dark

matter measurements. The result of the classification on the data can be seen in

Figure 10b, in which similarities with Figure 10a can be observed.

In this plot, only the data points within the 95% CL are shown. The white band,

therefore, corresponds to the parameter points that could not be classified within 95%

CL. All data points that lay outside of the sampling range as specified in Table 2

(or close to the border) were relocated into the sampling region in order to reduce

boundary effects of the classifier. In particular, for the points with m0 > 4 TeV the

masses of the scalars where moved back to values approximately 4 TeV. This has a

small effect on physics since the heavy scalars have masses outside of the sensitivity

of the LHC at 8 TeV.

5.4 Effects of limited training data and applicability range

In the previous subsections, we have shown that SUSY-AI indeed performs very well

despite the fact that the training sample is relatively small. However, here we want
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(a) Limits set by ATLAS [6] on mSUGRA

parameter space.

(b) The 95% CL result of the SUSY-AI

classifier.

Figure 10: Results of testing cMSSM with the trained classifier. The colors in

Figure 10b indicate the probability of the single point not being excluded. The

white band in Figure 10b corresponds to the points that were outside the 95% CL

boundaries.

to discuss the current limitations of SUSY-AI. Some regions of parameter space of

the pMSSM-19 are poorly sampled by the ATLAS data since in these corners of

the parameter space it is difficult to satisfy all phenomenological constraints. For

example, there are only a few parameter points with very light stops since this

would require the maximal mixing scenario with a very heavy t̃2 in order to obtain

a sufficiently heavy SM-like Higgs boson. In these corners, however, the lack of

training data translates to a lower value for the confidence level. This effect can be

observed in the plots in the previous chapters. Although the initial prediction may

be incorrect, applying a confidence level cut removes almost all incorrectly classified

data points from the tested sample.

The lack of data points, but also the improvement on the difference between the

true classification and the predicted classification, can be observed in Figure 11,

which shows density projections on the stop–LSP-mass plane of the total number of

parameter points used for testing, their true classification, prediction from the SUSY-

AI classifier and the fraction of misclassified points. Here we show a subspace in the

general pMSSM-19 parameter space summarized in Table 8 (left), which corresponds

to a subset of the pMSSM-19 resembling a natural-SUSY scenario with relatively light

stops but heavy sleptons, and first and second generation squarks. The figure shows

the classification for all points as well as for points satisfying the 95% CL and 99%

CL limit, respectively. As expected, with an increased CL level the misclassification

ratio consistently decreases, as can be seen in the right column. In the bottom left

corner of the stop–LSP-mass plane many light stop points are excluded if no CL
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Parameter Range

mL̃1
[600 GeV, 4 TeV]

mẼ1
[600 GeV, 4 TeV]

mL̃3
[600 GeV, 4 TeV]

mẼ3
[600 GeV, 4 TeV]

mQ̃1
[1200 GeV, 4 TeV]

mŨ1
[1200 GeV, 4 TeV]

mD̃1
[1200 GeV, 4 TeV]

mQ̃3
[1200 GeV, 4 TeV]

mŨ3
[100 GeV, 4 TeV]

mD̃3
[100 GeV, 4 TeV]

At [−8 TeV, 8 TeV]

Ab [−4 TeV, 4 TeV]

Aτ [−4 TeV, 4 TeV]

|µ| [80 GeV, 4 TeV]

|M1| [600 TeV, 4 TeV]

|M2| [600 GeV, 4 TeV]

M3 [1300 GeV, 4 TeV]

MA [600 GeV, 4 TeV]

tan β [1, 60]

Parameter Range

mL̃1
[700 GeV, 4 TeV]

mẼ1
[700 GeV, 4 TeV]

mL̃3
[700 GeV, 4 TeV]

mẼ3
[700 GeV, 4 TeV]

mQ̃1
[1200 GeV, 4 TeV]

mŨ1
[1200 GeV, 4 TeV]

mD̃1
[1200 GeV, 4 TeV]

mQ̃3
[1200 GeV, 4 TeV]

mŨ3
[1200 GeV, 4 TeV]

mD̃3
[1200 GeV, 4 TeV]

At [−8 TeV, 8 TeV]

Ab [−4 TeV, 4 TeV]

Aτ [−4 TeV, 4 TeV]

|µ| [80 GeV, 4 TeV]

|M1| [0 TeV, 4 TeV]

|M2| [70 GeV, 4 TeV]

M3 [1300 GeV, 4 TeV]

MA [700 GeV, 4 TeV]

tan β [1, 60]

Table 8: Input parameters of the pMSSM subspace in the light stop (left) and the

electroweakino (right) scenarios.

cut is demanded. As can be seen in the left column of this figure, however, this

corner was relatively poorly trained due to the lack of data points in that region.

It is because of this that the number of data points left after a confidence level cut

decreases for increasingly higher cuts, which is consistent with our discussion of the

performance of the classifier.

Figure 12 shows a second example in the M2–µ plane. This subset of the pMSSM-

19 is defined in Table 8 (right) and it resembles an electroweakino scenario with

severe restrictions on the parameter space. As a result, the M2–µ plane is sparsely

populated in the training sample. One can again observe a corner in the parameter

space that is excluded if no CL cut is imposed. In particular, the pure wino LSP

scenario is excluded due to long-lived sparticle searches. However, without any cut

the misclassification ratio is non-negligible. With increasing CL cuts, however, the

points with lower CL are removed and the misclassification ratio is significantly

reduced. This demonstrates that the CL assignment fulfills its role: it reveals the

‘uncertain’ points that require a more detailed assessment.
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Although introducing a cut on the confidence level removes data points on which

a prediction can be made from a testing sample, both Figures 11 and 12 show an

increase in the quality of the prediction. Using confidence levels in making predic-

tions, therefore, corresponds to removing data points on which the resulted binary

prediction was uncertain, automatically removing data points in regions of parameter

space with a low density of training data.

Another limitation of the current version is that it only uses the combined classi-

fication from all searches, without making a distinction which particular analysis

excluded a given parameter point. While this may underpower some of the analyses,

e.g. electroweak searches, the validation plots in Figures 13–16 show nevertheless a

good sensitivity to light electroweakinos and sleptons. The future versions will aim

to also use this additional information in order to improve performance in this region

of the parameter space.

The pMSSM sample used for training of SUSY-AI meets the set of constraints dis-

cussed in Section 2. As we showed in various validation plots, the code performs

well on points that belong to the to the tested subspace of the MSSM. The CMSSM

example further demonstrates that some of the constraints (e.g. Higgs mass or dark

matter relic density) can be relaxed. A user who wishes to use SUSY-AI on sam-

ples that are outside the ranges of the ATLAS sample or do not fulfill some of the

constraints should first perform revalidation of the code. The CL measure that we

introduced can greatly assist in this process. Generally speaking, a clear sign that

a classification cannot be trusted would be a high fraction of points with low CL

scores for the sample being tested. Another method would be to compare SUSY-AI

predictions to a small number of fully simulated points (a MC simulation and de-

tector simulation using CheckMATE would suffice) for which one can clearly conclude

about their exclusion status. We advise against using SUSY-AI for models that have

significantly different phenomenology from the training pMSSM sample, for example

including R-parity violation or the gravitino LSP. Finally, as an additional function-

ality, SUSY-AI issues and automated warning when a tested point lies outside the

limits specified in Table 2. When this is the case the point can be automatically

moved within the limits and the decision is left to the user if the prediction can be

trusted.

6 Conclusions

A random forest classifier has been trained on over 310 000 data points of the pMSSM.

We demonstrate that it provides a reliable classification with an accuracy of 93.8%.

The reliability can be improved by demanding a minimum confidence level for the

prediction. The trained classifier, SUSY-AI, is tested on the 19-dimensional pMSSM,
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the 6-dimensional natural SUSY model and on the 5-dimensional constrained MSSM.

All these tests yield results that confirm reliable classification.

SUSY-AI will be continuously updated with future LHC results as a part of the

BSM-AI project. When possible, the publicly available ATLAS and CMS data will

be used as in the current work. Additionally, we plan to generate our own MC data

samples and recast them to produce limits using CheckMATE based on the existing

and future LHC analyses. Classifiers and regressors for other models of new physics

are also planned so that the whole project could cover a broad range of theories.

SUSY-AI can be downloaded from the web page

http://susyai.hepforge.org

where we also provide installation instructions, more detailed technical information,

frequently asked questions, example codes and updates of SUSY-AI using results of

the ongoing Run 2, currently based on Refs. [96, 97].
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Appendix

A Comparison of out-of-bag estimation with train:test split

The SUSY-AI classifier was validated using out-of-bag estimation, i.e. using the full

available data set. In this appendix we compare SUSY-AI to an identically configured

classifier trained on a subset of the data, so that is could be validated using the

remaining data. Although this is the standard way of classifier validation, it has a

drawback that the classifier does not fully exploit the available data.

A comparison of the out-of-bag method and the splitting of the dataset is shown in

Tables 9 and 10. The column labels are defined as follows:

.

accuracy =
TP + TN

TP + FP + FN + TN
,

precision =
TP

TP + FP
,

sensitivity =
TP

TP + FN
,

specificity =
TN

TN + FP
,

negative predictive value (NPV) =
TN

TN + FN
,

(A.1)

while different tags for each point are assigned following the rules in Table 11. The

comparison yields similar results with the out-of-bag method performing better on

accuracy, precision and sensitivity.

Out-of-bag
CL # # / total Accuracy Precision Sensitivity NPV Specificity

0.0 310 324 1.0000 0.93226 0.93951 0.94665 0.92152 0.91133

0.68 289 371 0.93248 0.95735 0.96072 0.96835 0.95222 0.94094

0.95 219 233 0.70646 0.99094 0.99092 0.99426 0.99096 0.98573

0.98 184 230 0.59367 0.99543 0.99573 0.99672 0.99496 0.99346

0.99 160 034 0.51570 0.99708 0.99747 0.99764 0.99649 0.99624

Table 9: Results of the validation of the SUSY-AI classifier with out-of-bag estima-

tion.
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Dataset splitting train:test = 75:25
CL # # / total Accuracy Precision Sensitivity NPV Specificity

0.0 77 581 1.0000 0.92271 0.91653 0.93049 0.92912 0.91491

0.68 70 375 0.90712 0.9545 0.95516 0.95302 0.95386 0.95595

0.95 48 900 0.63031 0.99022 0.99047 0.9893 0.99 0.99109

0.98 39 815 0.51321 0.99485 0.99559 0.99353 0.99419 0.99604

0.99 34 004 0.43830 0.99644 0.99685 0.99554 0.99608 0.99724

Table 10: Results of the validation of the RF classifier with a split dataset (0.75

training, 0.25 testing).

True classification

Positive Negative

Prediction
Positive True positive (TP) False positive (FP)

Negative False negative (FN) True negative (TN)

Table 11: Classification of events following from comparison of true classification

and prediction [69].

B Projections of the pMSSM

In this appendix we provide additional validation plots demonstrating the perfor-

mance of SUSY-AI. They are presented in a similar manner to Figures 11 and 12 as

various two-dimensional projections of the 19-dimensional pMSSM parameter space.

We show the following projections: mb̃1
–mχ̃0

1
plane in Figure 13, m˜̀

L
–mχ̃0

1
plane in

Figure 14, mχ̃0
2
–mχ̃0

1
plane in Figure 15, mχ̃±

1
–mχ̃0

1
plane in Figure 16, mA0–tan β plane

in Figure 17, µ–M2 plane in Figure 18, M3–mQ̃1
plane in Figure 19, and mQ̃1

–mD̃1

plane in Figure 20.
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