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Abstract

We explore the use of autoregressive flows, a type of generative model with tractable
likelihood, as a means of efficient generation of physical particle collider events. The
usual maximum likelihood loss function is supplemented by an event weight, allow-
ing for inference from event samples with variable, and even negative event weights.
To illustrate the efficacy of the model, we perform experiments with leading-order top
pair production events at an electron collider with importance sampling weights, and
with next-to-leading-order top pair production events at the LHC that involve negative
weights.

Copyright B. Stienen and R. Verheyen.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 30-11-2020
Accepted 10-02-2021
Published 17-02-2021

Check for
updates

doi:10.21468/SciPostPhys.10.2.038

Contents

1 Introduction 2

2 Phase Space Sampling with Autoregressive Flows 3
2.1 Autoregressive Flows 4
2.2 Inference from Weighted Data 5
2.3 Implementation 7

3 Experiments with Importance Sampling Weights 7
3.1 Unweighted Event Training 8
3.2 Weighted Event Training 11

4 Experiments with Negative Weights 11

5 Conclusion and Outlook 13

A Phase space parameterizations 15
A.1 Leading Order e+e−→ t t̄ 15
A.2 Next-to-Leading Order pp→ t t̄ with Parton Shower 16

References 16

1

https://scipost.org
https://scipost.org/SciPostPhys.10.2.038
mailto:bstienen@science.ru.nl
mailto:r.verheyen@ucl.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.10.2.038&amp;domain=pdf&amp;date_stamp=2021-02-17
https://doi.org/10.21468/SciPostPhys.10.2.038


SciPost Phys. 10, 038 (2021)

1 Introduction

With the increasing complexity of particle collision events at experiments like the LHC, the
production of experimental predictions based on the Standard Model or other physical models
has come to heavily rely on numerical simulations. General-purpose event generators like
Pythia [1], Herwig [2] and Sherpa [3] are widely used Monte Carlo (MC) programs [4] that
allow for direct comparison between theoretical predictions and experimental measurements.

As the amount of data gathered at the LHC increases, so does the required precision of
the theoretical simulations. By now, the use of multiple-emission NLO generators through
formalisms like MEPS@NLO [5,6] or FxFx [7] have become the standard. Furthermore, NLL
accuracy in parton showers was recently achieved [8–11], and further improvements through
the inclusion of higher-order splitting functions [12–14] and subleading colour effects [15–
18] are now available. However, as a consequence the computational demands of MC event
generation has sharply risen [19,20]. A significant component of the incurred computational
cost of such simulations is due to the required computation of large-dimensional integrals that
describe the phase space of LHC events. Monte Carlo techniques are often the only feasible
option for these types of simulation, and as such efficient phase space sampling algorithms
are required. While many commonly used techniques, like the VEGAS algorithm [21, 22],
have been used successfully for a long time, their efficiency starts to suffer rapidly as the
complexity of the sampling problem at hand increases [23], quickly becoming the bottleneck
of the simulation pipeline. Many more traditional techniques have been proposed to improve
performance [24–30], but the recent advances in the field of machine learning have lead to
a number of highly promising algorithms which may be applicable to the problem of event
generation in high energy physics more broadly.

In particular, Generative Adversarial Networks (GANs) [31], Variational Autoencoders
(VAEs) [32] and several other architectures have been used successfully to sample events at
various stages of the event generation sequence, and in many related high energy physics gen-
erative processes [33–64]. On the other hand, work done in [65–71] focused on the particular
problem of sampling the phase space of a hard scattering process with different techniques,
the latter making use of the relatively modern Normalizing Flow models [72]. While the use
of GANs and VAEs has led to impressive results, they may in some cases be difficult to opti-
mize. For example, the objective of a GAN is to find a Nash equilibrium between the generator
and discriminator networks, which is generally difficult to find with gradient descent [73]. A
VAE is instead trained to optimize a variational lower bound of the real likelihood, leaving
leeway to mismodel the underlying probability distribution of the data. Flow models instead
offer tractable evaluation of the likelihood, which may be optimized directly. This is a signifi-
cant advantage in the context of the generation of high energy physics events, where precise
reproduction of the density is paramount.

Normalizing flows are probabilistic models that are constructed as an invertible, param-
eterized variable transform starting from a simple prior distribution. Recent comprehensive
reviews may be found in [74, 75]. The main challenge of the construction of these models
is to ensure the variable transforms are both parametrically expressive and computationally
efficient. To that end, much progress has recently been made [76–87]. In particular, the flow
architecture first proposed in [76] along with the expressive transforms such as those proposed
in [83, 88] were used in [68–70] as a phase space integrator. Autoregressive models [80, 81]
generalize this architecture further by allowing for more flexible correlations between latent
dimensions, and may as such be expected to perform better in larger feature spaces. This gen-
eralization comes at a higher computational cost in either the forward (sampling) direction or
the backward (training) direction.

In this paper, we explore the use of autoregressive flows to sample the relatively high-
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dimensional phase space of t t̄-production and decay at the matrix element level in e+e−-
collisions and at the parton shower level in pp-collisions at NLO. We show how flow models
may be trained on event samples with variable and/or negative event weights. Such events
occur frequently in the context of high energy physics, for instance in importance sampling
for matrix element generation, the matching of higher order of perturbation theory to parton
showers, or in the modelling of a combination of background and signal processes.

The two test cases explored in this paper are meant to demonstrate the ability of an au-
toregressive flow to be trained on weighted events, but also illustrates that it may be used as a
phase space integrator as in [68–70], but also as a more general event generator like the other
generative models of [33–64].

In section 2 we introduce the autoregressive flow architecture used in this paper. Section
3 then describes the application of the flow model to matrix element-level e+e− → t t̄ with
the full post-decay phase space. The flow is trained on an unweighted event sample and
compared with VEGAS, as well as on several sets of weighted events to exhibit the capability of
the model to be trained on weighted data. In section 4 the flow model is applied to parton-level
pp→ t t̄ matched with MC@NLO [89]. This process is challenging due to the high-dimensional
phase space and the appearance of negative weights. An outlook is given in section 5. Some
supplementary material regarding phase space parameterizations used in sections 3 and 4 is
given in appendix A.

2 Phase Space Sampling with Autoregressive Flows

Autoregressive flows are a class of normalising flows, which are a type of machine learning
model that is able to directly infer the probability distribution of provided training data. This
distribution is modelled by applying a series of parameterized, invertible transformations

zi+1 = fi(zi;θi), (1)

to a generally simple prior distribution p0(z0), where θi are parameters that are determined
during training. Applying the first transform leads to

p1(z1) = p0(z0)
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To model complex distributions, multiple transforms may be applied subsequently, leading to
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where x ≡ zK are the real data features, and the other zi are latent variables. The training
of the parameters θ of a normalising flow can be accomplished by minimising the negative
log-likelihood

Loss(X ,θ ) = −
∑

x i∈X

log pK(x i) (5)

of the training data X under the modelled distribution using some form of gradient descent.
As eq. (5) is a function of the parameters θi through the transforms fi(zi;θi), they may be
iteratively updated toward a minimal negative log-likelihood through gradient descent.

Valid transformations fi need to be invertible and should have a Jacobian determinant
that can be calculated efficiently, as this operation needs to be performed many times during
inference. This last requirement becomes even more stringent as the dimensionality of the
training data grows. The search for expressive transforms that adhere to these requirements
has been one of the main paths in the research on normalising flows [72].

2.1 Autoregressive Flows

Autoregressive flows achieve the efficiency requirement by decomposing the likelihood for
D-dimensional data such that it obeys the autoregressive property

p(z) =
D
∏

j=1

p(z j|z1: j−1), (6)

following the chain rule of probability, where superscripts indicate the feature of a data point
(i.e. z2 is the second feature of data point z). The likelihood is thus decomposed into a product
of one-dimensional conditionals that may be modelled parametrically. In a flow model, eq. (6)
may be imposed by casting the one-dimensional transformations in the form

z j
i+1 = f j

i+1(z
j
i ;θ j

i (z
1: j−1
i+1 )), (7)

meaning that, to transform feature j from z j
i to z j

i+1, the parameters of the transform depend

only on the previously calculated values for z1
i+1 to z j−1

i+1 . The resulting Jacobian matrix is
triangular and its determinant is the product of the diagonal entries, making the computation
of its determinant very efficient. A normalizing flow that implements this idea is the Masked
Autoregressive Flow (MAF) [80]. A visualisation of the procedure is shown in figure 1, where
a diagram for both the forward-pass (required during sampling) and backward-pass (required
during inference) is shown.

The parameters θ fed into the transformation function f can be computed efficiently using
a Masked Autoencoder for Distribution Estimation (MADE) network [79]. This is a deep neural
network where internal connections are ignored such that the autoregressive property eq. (6)
is satisfied. A diagrammatic illustration of a MADE network is shown in figure 2. Note that the
choice to make θ depend on zi+1 makes it impossible to parallelize the forward-pass through
a MAF. The opposite is true for the backward-pass: as all values of zi+1 are already known,
this pass can be trivially parallelized.

The choice for a MAF architecture thus makes training, which boils down to backprop-
agating the training data through the network and optimising the log-likelihood, relatively
fast. Transforming data from the base distribution to the final distribution is, however, com-
paratively slow. One could alternatively choose to let θ depend on zi , which would make the
forward-pass fast, at the cost of a slower backward-pass. Such an architecture is known as an
Inverse Autoregressive Flow (IAF) [81].

In either architecture the actual transformation function fi can be defined freely. They can
be simple affine transformations [80], but a choice for more complicated functions can yield
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(a) Forward-pass in a Masked Autoregressive Flow.
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θ j(. . .)
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(b) Backward-pass in a Masked Autoregressive Flow.

Figure 1: Diagrammatic representation of a Masked Autoregressive Flow. The func-
tion θ j takes as input the first j − 1 entries of zi+1. Its derivatives do not appear in
the calculation of the Jacobian of this transformation, so θ j can be implemented in
the form of a neural network. The backward-pass can be paralellized, while this is
not the case for the forward-pass.

a more expressive model. Furthermore, in this paper we explore the use of flow models in the
sampling of phase space, which has well-defined boundaries. As such, it is convenient if the
transforms are similarly restricted to a fixed domain. We therefore choose our transformations
fi to be piecewise Rational Quadratic Splines (RQS), as defined in [83]. They are expressive,
continuous and smooth [0, 1]→ [0, 1] bijections that maintain easily calculable inverses and
derivatives. The spline is spanned by a set of rational quadratic polynomials between a prede-
termined number of knots. The positions of the knots and the derivatives at those knots are
parameterized by the MADE network in the form of bin widths θ j

x , bin heights θ j
y and knot

derivatives θ j
d . Figure 3 shows an illustration of a RQS.

2.2 Inference from Weighted Data

The autoregressive flow model explored in this paper may be trained on data from various
stages of the event generation sequence, with the goal of either speeding up the process of
event generation or adding statistical precision [90]. Often, traditional Monte Carlo techniques
inevitably lead to the production of weighted events. Some examples are:

• Importance sampling of matrix elements with techniques such as VEGAS;

• Matching and merging of higher order calculations to parton showers;

• Scale variations in higher order calculations;

• Enhancement of rare branchings in parton shower algorithms;

5

https://scipost.org
https://scipost.org/SciPostPhys.10.2.038


SciPost Phys. 10, 038 (2021)

a

b

c

θa

θb(a)

θ c(a,b)

Figure 2: Graphical representation of a MADE network, which is a neural network
in which specific weights have been masked, such that the autoregressive property
of eq. (6) is obeyed. This figure shows the unmasked weights as arrows between the
network nodes, which are indicated with circles.

z1: j−1
i+1 NN

Derivatives θ j
d

Bin heights θ j
y

Bin widths θ j
x

z j
i+1

z j
i

Figure 3: Visualisation of the construction of a rational quadratic spline f . A neural
network takes parameters z1: j−1

i+1 as input and returns the y-positions of the spline
knots, the derivative at each of these knots and the distance between these knots. By
spanning rational quadratic functions between these knots a monotonically increas-
ing piecewise function that takes z j

i as input and that produces z j
i+1 as output can be

constructed.

• Enhancement of suppressed kinematic regions;

• The combination of event samples with strongly varying cross sections.

In some of the above cases, negative event weights may even appear.
Generally, weighted event samples may be unweighted through rejection sampling, where

every event with weight wi is kept with probability

pi =
wi

wmax
. (8)

However, especially in cases where the event sampling procedure is computationally expensive
and the fluctuation of weights is large, rejection sampling may be wasteful. Furthermore,
it does not provide a solution to the appearance of negative weights, which are especially
detrimental to statistical efficiency. However, recent work has shown that other methods are
available to reduce the occurrence of negative weights [91–93].

Alternatively, the flow model can be trained on weighted events directly by a minor modi-
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fication of the loss function of eq. (5):

Lossweighted(X ,θ ) = −
∑

x i∈X

wi log pK(x i). (9)

This loss function leads to the correct optimization of the flow model even for event samples
that include negative weights. Furthermore, it may be used to train the model more accurately
in cases where it would be difficult to obtain sufficient statistics with unweighted events in
suppressed corners of phase space. A flow model trained on weighted events will still generate
unweighted events.

In the next sections, we perform experiments with weighted events obtained through im-
portance sampling (section 3), and negatively weighted events due to matching to next-to-
leading order (section 4).

2.3 Implementation

The flow model starts from a uniform base distribution and applies a number of RQS trans-
forms, each with its own dedicated MADE network, between which the features are permuted
to ensure full dependence of every feature on all others. The complete architecture is defined
by the following hyperparameters:

• n_RQS_knots: the number of knots in every RQS;

• n_made_layers: the number of hidden layers in the MADE networks;

• n_made_units: the number of nodes in the hidden layers of the MADE networks;

• n_flow_layers: the number of RQS transformations applied to the base distribution.

To train the flow models, the Adam optimiser [94] is used with default settings. Additionally,
a learning rate scheduling is applied: after a predefined number of epochs the learning rate is
halved if the number of elapsed epochs is a multiple of a predefined period. The training of
the flow models is defined by the following hyperparameters:

• batch_size: the number of data points in each training batch;

• n_epochs: the number of epochs for which the flow is trained;

• adam_lr: the initial learning rate of the Adam optimizer;

• lr_schedule_start: the epoch after which learning rate scheduling is started;

• lr_schedule_period: the number of epochs after which the learning rate is halved.

All experiments are performed using a modified version of nflows 0.13 [95], which is built
upon PyTorch 1.6.0 [96]. The code and Jupyter Notebooks used in these experiments can
be found in [97].

3 Experiments with Importance Sampling Weights

To test the performance of the autoregressive flow when trained on data with positive, fluctuat-
ing event weights in a particle physics context, the importance sampling of a matrix element is
a natural candidate as it allows for straightforward definition of performance metrics. We thus
consider the sampling of the phase space according to the LO matrix element of the process

e+e−→ t t̄ → (bud) (b̄e−νe). (10)
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This process has been used as a benchmark in other work [37, 61], representing a challeng-
ing high-dimensional phase space that does not require any infrared cuts. After imposing
momentum conservation and on-shell conditions, the remaining 14 dimensions are mapped
to variables in the unit box [0,1]14 representing the top and W resonance masses and solid
angles in their respective decay frames. Further details may be found in appendix A.

We implement the VEGAS algorithm to compare the flow model with. The matrix element
is retrieved from the C++ interface of MadGraph5_aMC@NLO [98]. The VEGAS algorithm is
initialized from a prior distribution that mirrors the approximate Breit-Wigner shapes of the
resonance masses using a mass-dependent width [99], and uniform distribution for all other
dimensions1. The VEGAS results shown below represent performance after the integration grid
is stable and the algorithm no longer improves.

To obtain events that are distributed according to the squared matrix element, one samples
events x from VEGAS or the autoregressive flow and assigning weights

wi ∝
|M(x)|2

psampler(x)
, (11)

where the x-independent proportionality factor may include constants associated with the
phase space. Next, rejection sampling with acceptance probability (8) is applied, losing a
fraction of the events, but ensuring the remaining sample follows the matrix element. To test
the performance of VEGAS and the autoregressive flow model, we can compute the average
unweighting efficiency

η=
1
n

∑n
i=1 wi

wmax
, (12)

which indicates the average fraction of events left after rejection sampling. As was pointed out
in [69, 71, 100], the straightforward definition is prone to outliers in the weight distribution.
We follow [71] and clip the maximum weight to the largest Q-quantile of wi , denoted by wQ.
The error in the Monte Carlo integral due to this clipping may be quantified by the coverage

cov=

∑

i w′i
∑

i wi
, (13)

where

w′i =

¨

wi if wi ≤ wQ

wQ if wi > wQ.
(14)

One other often-used efficiency measure is the effective sample size [101, 102], which repre-
sents the approximate number of unweighted events that a weighted set would be equivalent
to. We find that this measure is similarly sensitive to outliers, and thus restrict ourselves to the
above-defined clipped unweighting efficiencies.

3.1 Unweighted Event Training

We first evaluate the inference capacity of the autoregressive model by training it on a set of
106 event samples generated by VEGAS and unweighted through rejection sampling. Table
1 lists the values of the hyperparameters. Note that the method of training on pregenerated
events differs from the approaches used in [68–71], where training is performed by sampling
from the flow and evaluating the matrix element directly. While the architecture employed
here is equally capable of this type of training, its parallelizable nature and the relatively large
dimensionality of the process at hand means that training on a GPU is very beneficial. However,

1We find that VEGAS does not converge when initialized from a flat prior.
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Table 1: Table of hyperparameters used for the importance sampling experiments.

Model Training
Parameter Value Parameter Value
n_RQS_knots 10 batch_size 1024
n_made_layers 1 n_epochs 800
n_made_units 100 adam_lr 10−3

n_flow_layers 6 lr_schedule_start 350
lr_schedule_period 75

to our knowledge there currently is no straightforward way to evaluate matrix elements on
a GPU in the PyTorch framework, although progress has been made previously [103] and
neural network-based approaches exist [104,105].

Table 2 shows a comparison of the unweighting efficiencies of eq. (12) and the associated
coverages of eq. (13) evaluated for the VEGAS algorithm and the flow model2. For reference,
the efficiency of a flat sampling of the phase space parameterization is also included. The flow
model outperforms VEGAS almost everywhere, with the notable exception of the coverage for
Q = 0.99999. This indicates that, while the average unweighting efficiency is better, the flow
model produces a few outliers with larger weights than VEGAS.

Figure 4 shows a number of distributions comparing the model with the Monte Carlo truth.
That is, the VEGAS, flow and flat distributions represent the direct outputs of the samplers,
while after weighting and performing rejection sampling, all samples will follow the true dis-
tribution. The top two panels show the W boson mass and the t quark azimuthal angles,
which directly correspond with features of the space parameterization. Consequently, correla-
tions between variables are not required and VEGAS and the flow model perform equally well.
While the Breit-Wigner peak is completely absent in the flat distribution of the W boson mass
distribution, VEGAS and the autoregressive flow model it well, with VEGAS outperforming the
flow slightly. However, the VEGAS algorithm has to be started from a Breit-Wigner prior dis-
tribution to achieve convergence, while the flow model is able to learn it without assistance.
It is possible to select a different phase space parameterization that smooths out the Breit-
Wigner peaks. In these experiments, the masses were purposely kept as features such that the
capability of the flow model to learn such rapidly-changing distributions could be evaluated.
The azimuthal distribution is included because the modelling of a flat distribution in the flow
model is not necessarily any easier than any other shape.

The other four distributions shown are of the electron and b quark energy, the W boson
transverse momentum and the angle between the b and b̄ quarks. These distributions are
related to the phase space parameterization through a series of Lorentz transforms, meaning
that correlations between dimensions are required to obtain the most accurate predictions.
Consequently, VEGAS performs worse than the flow model across all spectra. The flow model
predominantly mismodels the distributions in regions of low statistics. These types of discrep-
ancies may in principle be remedied by biasing the training data towards the tails of distri-
butions, and correcting in the event weights. We finally point out that the flat distribution is
sampled in the hypercube phase space parameterization, and does thus not appear as flat after
conversion to physical momenta.

2While the Masked Autoregressive Flow architecture is slower in the sampling direction than in the inference
direction, the sampling of events on a GPU is still very fast. Sampling 106 events takes approximately 24 seconds
on a Nvidia GTX1080 Ti.
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Figure 4: Distributions of the W boson mass (top left), t quark azimuthal angle (top
right), electron energy (middle left), b quark energy (middle right), W boson p⊥
(bottom left) and the angle between the b and b̄ quarks (bottom right) of the MC
truth (red), which here serves as the training data, the VEGAS prediction (blue) and
the flow model prediction (green).
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Table 2: Table of unweighting efficiencies computed with 107 flow, VEGAS and flat
samples. The unweighting efficiencies and coverages are computed for three values
of Q, where the first one corresponds with setting wQ = wmax.

Q = 1 Q = 0.99999 Q = 0.999
η cov η cov η cov

Flow 0.010 1 0.088 0.99987 0.32 0.9985
VEGAS 0.0082 1 0.077 0.99992 0.25 0.997
Flat 3.2·10−7 1 2.6·10−4 0.094 1.8·10−3 0.0016

3.2 Weighted Event Training

In many cases, the bottleneck of importance sampling is not necessarily the likelihood eval-
uation, but rather the small unweighting efficiency achieved by commonly-used techniques
[106]. We thus explore the capability of the normalizing flow to be trained on events gener-
ated by VEGAS before unweighting. We generate a sample of 106 events with the same VEGAS
setup used previously, and compute their importance sampling weights. We then consider the
performance of the flow network when trained on the following three datasets:

Weighted The original 106 data points with their importance weights;

Unweighted The remaining events after rejection sampling of the weighted data;

Mean-weighted Events are partially unweighted using the mean weight as a reference.
That is, events that have weight w < wmean are rejected with probability w/wmean and
assigned unit weight when kept, while events that have w> wmean receive the adjusted
weight w/wmean.

The left-hand side of figure 5 shows the distribution of weights of these datasets. The un-
weighted and mean-weighted sets retain respectively 0.83% and 70.78% of the original size.

The flow model is trained on the datasets above with the same hyperparameters as listed
in table 1. The right-hand side of figure 5 shows the loss development during training. The
unweighting efficiencies of eq. (12) and the associated coverages of eq. (13) are shown in
table 3, and figure 6 shows the W boson mass and electron energy distributions compared
with the Monte Carlo truth. We observe very similar performance of the models trained on
the weighted and mean-weighted datasets. However, the right-hand side of figure 5 shows
that the latter converges faster. The slower convergence of the weighted dataset is a result of
the large spread of weights, which causes large variance in the gradients during training and
may lead to instability [107]. The model trained on the unweighted data fails to capture the
Breit-Wigner peak and thus performs much worse. Too many events are indeed lost during
rejection sampling, and figure 5 shows that the model would no longer improve upon further
training.

4 Experiments with Negative Weights

To illustrate the capability of the autoregressive flow network to be trained on events with
negative weights, we consider the process

pp→ t t̄, (15)

at next-to-leading order using MadGraph5_aMC@NLO, which interfaces with various external
codes [108–113]. Events are generated at

p
s = 13 TeV with the NNPDF2.3 PDF sets [114],
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Table 3: Table of unweighting efficiencies computed with 107 samples drawn from
the autoregressive flow models trained on the weighted, unweighted and mean-
weighted datasets. The unweighting efficiencies and coverages are computed for
three values of Q, where the first one corresponds with setting wQ = wmax.

Q = 1 Q = 0.99999 Q = 0.999
η cov η cov η cov

Weighted 0.00097 1 0.042 0.99954 0.27 0.9976
Unweighted 0.00040 1 0.010 0.9988 0.074 0.9911
Mean-weighted 0.0044 1 0.046 0.99977 0.26 0.9980
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Figure 5: Distribution of weights of the weighted datasets, normalized to the size of
the original weighted set (left) and the development of the training and test loss for
the flow models trained on those datasets (right). The test loss is evaluated on the
independent sample of the unweighted events used in section 3.1.
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Table 4: Table of hyperparameters used for the negative weights experiments.

Model Training
Parameter Value Parameter Value
n_RQS_knots 16 batch_size 1024
n_made_layers 3 n_epochs 800
n_made_units 250 adam_lr 10−3

n_flow_layers 12 lr_schedule_start 350
lr_schedule_period 75

decayed to b quarks and leptons by Madspin [115] and are matched to the Pythia8 parton
shower through the MC@NLO prescription [89], which is a necessity to obtain physically sen-
sible events. The parton-level events are clustered with the kt algorithm with R = 0.4 using
FastJet [116]. The top quark momenta are then reconstructed as described in appendix A.
We note that the flow could also be trained on hadron-level or detector-level events.

By default, MadGraph5_aMC@NLO produces events of which a fraction of 23.9% has a neg-
ative weight. Consequently, the dataset consists of 3.68×106 events, which would statistically
correspond with 106 unweighted events. The hyperparameter settings of the autoregressive
flow are shown in table 4.

Figure 7 shows several distributions comparing the MC truth, the equivalent distribution
ignoring the sign of the event weights, and the flow model prediction. The upper distributions
are features present in the data directly, while the lower are observables that require corre-
lations. The distributions without event weights are included here to show that the model
indeed learns to incorporate negatively weighted events correctly during training. The effects
of the negative weights are especially relevant in distributions like the transverse momentum of
the top pair, which are determined by higher-order QCD corrections. The autoregressive flow
matches the true distributions well, again only mismodelling some regions with low statistics.

5 Conclusion and Outlook

We have shown that autoregressive flows are a class of generative models that are especially
useful in the task of sampling complex phase spaces. Unlike other generative models like
GANs and VAEs, they have the distinct advantage of direct access to the model likelihood
during inference, such that the loss function may be defined to directly fit the model density
to the data density. Not only does this offer a clear objective during training, but it may also
be very useful for other purposes such as the evaluation of the generalizability of the model,
or for methods such as likelihood-free inference [117]. Furthermore, we show that the loss
function can be generalized trivially to incorporate fluctuating and/or negative event weights.

We performed experiments with leading-order matrix element-level e+e−→ t t̄ events with
full decays. When trained on unweighted events, the autoregressive flow outperforms VEGAS
and is able to learn the resonance poles automatically. The same model architecture was then
trained on events with variable importance weights, and it was shown that better performance
is achieved when compared with the equivalent unweighted dataset. This indicates that it may
be beneficial to train on sets of weighted events when event generation is expensive or the
unweighting efficiency is low. Such event sets commonly appear in the context of high energy
physics, and weights may alternatively be used to improve model precision in regions of low
statistics.

To show how the autoregressive flow deals with negative weights, it was trained on next-to-
leading-order parton shower-level pp→ t t̄ events. By inspecting observables that are sensitive
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Figure 7: Distributions of the top mass (top left), the transverse momentum of the
top pair (top right), the invariant mass of the top pair (bottom left) and the transverse
momentum of the top (bottom right) of the MC truth (red), the MC truth ignoring
the sign of the event weights (blue) and the flow model prediction (green).

to the higher-order QCD corrections to that process, it is made clear that the autoregressive
flow is able to incorporate the negative event weights correctly.

The results presented here represent first evidence for the use of autoregressive flows as
a potential alternative for traditional Monte Carlo techniques. Although there are differences
between the true and modelled distributions, these are generally at the percent-level, except
for regions with low statistics. However, as with almost any machine learning method, flow
models are expected to exhibit improved performance when trained on more data, as long
as adequate hyperparameters are chosen. Furthermore, the ability to perform inference from
weighted data enables one to cover regions of low statistics more comprehensively, as long as
the density is corrected through the event weights.

However, there is still a long ways to go before autoregressive flows, and generative models
more generally, may function as a stand-in for a full-fledged event generator. While this would
be highly beneficial in aspects like computational efficiency, better control over the systematic
errors learned by the model is required. In this context, flow models may have an advantage
over other options due to their directly tractable likelihood.

Furthermore, while the model presented here may be applied to any well-defined phase
space with a fixed number of momenta, further improvements are required for the simula-
tion of realistic final states that could even be inferred from data directly. For example, the
number of objects is typically not fixed, which is not straightforwardly dealt with in the nor-
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malizing flow paradigm. Furthermore, discrete features appear both in realistic events in the
form of object labels, as well as at the matrix element level in the form of helicity and colour
configurations, which are not straightforwardly accurately modelled by a continuous flow.

Finally, multiple types of generative model architectures exist, of which normalizing flows
are the youngest and are still rapidly developing. While all of these models have been shown to
be able to produce particle physics events efficiently and accurately, a thorough and systematic
assessment of their accuracy is required before they may be considered as a stand-in for current
MC event generators.

Acknowledgements

We are grateful to Sascha Caron and Luc Hendriks for many useful discussions. RV thanks
Stefan Prestel for help with the generation of the next-to-leading-order data. RV acknowledges
support by the Foundation for Fundamental Research of Matter (FOM) via program 156 Higgs
as Probe and Portal, by the Science and Technology Facilities Council (STFC) via grant award
ST/P000274/1 and by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 788223, PanScales).
BS acknowledges the support by the Netherlands eScience Center under the project iDark: The
intelligent Dark Matter Survey.

A Phase space parameterizations

In this appendix we briefly summarize the phase space parameterizations used in experiments
of this paper.

A.1 Leading Order e+e−→ t t̄

The general phase space integration element is given by

dΦn = (2π)
4−3nδ

�

P −
n
∑

i=1

pi

� n
∏

j=1

d4p j δ(p
2
j −m2

j ), (16)

where P is the center-of-mass momentum which has P2 ≡ s. Due to the appearance of multiple
Breit-Wigner-like peaks in the process at hand, it is sensible to decompose the phase space
into two-body elements connected by integrals over the invariant masses that appear in the
amplitude propagators. In particular, we may write [118]

dΦ6(pb, pb̄, pe, pν, pu, pd |P) = dm2
W+

dm2
W− dm2

t dm2
t̄ dΦ2(pt , p t̄ |P)

× dΦ2(pW+ , pb|pt) dΦ2(pW− , pb̄|p t̄)

× dΦ2(pu, pd |pW+) dΦ2(pe, pν|pW−), (17)

where

pW+ = pu + pd pt = pb + pW+

pW− = pe + pν p t̄ = pb̄ + pW− (18)

are the momenta of the intermediate resonances. The two-body phase space element may be
written as

dΦ2(p1, p2|q) =
1

32π2
λ

�

1,
p2

1

q2
,

p2
2

q2

�1/2

dΩ , (19)
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where λ is the Källén function and dΩ ≡ d cos(θ ) dϕ is the solid angle integration element
defined in the rest frame of q. Eq. (17) is then easily converted to an integral over the unit
box [0, 1]14 by rescaling all masses and angles to

xθ =
1
2
(cos(θ ) + 1) xϕ =

ϕ

2π
xm2 =

m2

s
. (20)

Transforming back and forth between the phase space and the unit box parameterization thus
involves a number of Lorentz boosts between the rest frames of the intermediate resonances.

A.2 Next-to-Leading Order pp→ t t̄ with Parton Shower

The top quark decays are fixed to

t → b W+→ bµ+ νµ
t̄ → b̄ W−→ b̄ e− ν̄e. (21)

After parton showering and jet clustering, the momenta of the resonances are constructed as

pt = p jb + pµ + pνµ
p t̄ = p jb̄

+ pe + pν̄e
, (22)

where p jb and p jb̄
are the momenta of the b-tagged jets. The top quark momenta are converted

to the unit-box variables

xm =
m
p

s
, xpT

=
pTp

s
, xθ =

1
2
(cos(θ ) + 1) , xϕ =

ϕ

2π
, (23)

where m is the resonance mass, pT is the transverse momentum with respect to the beam
direction and θ and ϕ are the polar and azimuthal angles.
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