115 research outputs found

    Performance and Stability of Doped Ceria–Zirconia Catalyst for a Multifuel Reforming

    Get PDF
    In the present work, the catalytic behavior of nickel-based catalysts supported on ceria/zirconia, undoped and doped with lanthanum and neodymium (3.5Ni/Ce0.8La0.5Nd0.2Zr0.13O2−x), was investigated under different reactions: steam reforming, partial oxidation and autothermal reforming of different fuels (methane, biogas, and propane). The catalytic properties of these catalysts were evaluated at a temperature of 800 °C, under atmospheric pressure, at GSHV = 120,000 h−1, using steam/carbon and oxygen/carbon ratio, respectively, of S/C = 2.5 and O/C = 0.5 and, in the case of autothermal conditions, with the addition of H2S (100 ppm) as a contaminant. Depending on the tested fuel, ATR, SR, and POX reactions over doped and undoped catalysts showed different results. In particular, the doped catalyst, due to neodymium and lanthanum doping, better distributed nickel species on the catalyst surface, promoting a higher concentration of defect groups and oxygen vacancies. This resulted in improved catalytic performance and resistance to deactivation. Endurance catalytic test also confirmed the beneficial effect of the doped catalysts

    Varroa destructor exacerbates the negative effect of cold contributing to honey bee mortality

    Get PDF
    Several concurrent stress factors can impact honey bee health and colony stability. Although a satisfactory knowledge of the effect of almost every single factor is now available, a mechanistic understanding of the many possible interactions between stressors is still largely lacking. Here we studied, both at the individual and colony level, how honey bees are affected by concurrent exposure to cold and parasitic infection. We found that the parasitic mite Varroa destructor, further than increasing the natural mortality of bees, can induce an anorexia that reduces their capacity to thermoregulate and thus react to sub-optimal temperatures. This, in turn, could affect the collective response of the bee colony to cold temperatures aggravating the effect already observed at the individual level. These results highlight the important role that biotic factors can have by shaping the response to abiotic factors and the strategic need to consider the potential interactions between stressors at all levels of the biological organization to better understand their impact

    Visualization, navigation, augmentation. The ever-changing perspective of the neurosurgeon

    Get PDF
    Introduction: The evolution of neurosurgery coincides with the evolution of visualization and navigation. Augmented reality technologies, with their ability to bring digital information into the real environment, have the potential to provide a new, revolutionary perspective to the neurosurgeon. Research question: To provide an overview on the historical and technical aspects of visualization and navigation in neurosurgery, and to provide a systematic review on augmented reality (AR) applications in neurosurgery. Material and methods: We provided an overview on the main historical milestones and technical features of visualization and navigation tools in neurosurgery. We systematically searched PubMed and Scopus databases for AR applications in neurosurgery and specifically discussed their relationship with current visualization and navigation systems, as well as main limitations. Results: The evolution of visualization in neurosurgery is embodied by four magnification systems: surgical loupes, endoscope, surgical microscope and more recently the exoscope, each presenting independent features in terms of magnification capabilities, eye-hand coordination and the possibility to implement additional functions. In regard to navigation, two independent systems have been developed: the frame-based and the frame-less systems. The most frequent application setting for AR is brain surgery (71.6%), specifically neuro-oncology (36.2%) and microscope-based (29.2%), even though in the majority of cases AR applications presented their own visualization supports (66%). Discussion and conclusions: The evolution of visualization and navigation in neurosurgery allowed for the development of more precise instruments; the development and clinical validation of AR applications, have the potential to be the next breakthrough, making surgeries safer, as well as improving surgical experience and reducing costs

    Lophine derivatives as activators in peroxyoxalate chemiluminescence

    Get PDF
    Lophine and four of its derivatives were used as activators (ACTs) of the chemiluminescent peroxyoxalate (PO) reaction of bis(2,4,6-trichlorophenyl) oxalate with H2O2, catalysed by imidazole. Kinetic emission assays have shown that with the tested compounds the reaction mechanism, regarding the formation of the high energy intermediate (HEI) of the PO reaction, occurs as previously seen for commonly used ACTs. A bimolecular interaction of the compounds with the HEI leads to chemiexcitation through the chemically initiated electron exchange luminescence (CIEEL) mechanism, as confirmed by a linear free-energy correlation between the relative catalytic rate constants and the oxidation potentials of the compounds. the yields of excited state formation and light emission, in the range of 10(-2)-10(-3) E mol(-1), are comparable to the ones seen with commonly used ACTs. A Hammett plot with rho = -0.90 indicates the buildup of a partial positive charge on the transition step of the catalytic process, consistent with the formation of a radical cation of the ACT, being an additional validation of the CIEEL mechanism in this system.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Fed ABC, Ctr Ciencias Nat & Humanas, Santo Andre, SP, BrazilUniversidade Federal de São Paulo, Inst Ciencias Ambientais Quim & Farmaceut, Diadema, SP, BrazilUniversidade Federal de São Paulo, Inst Ciencias Ambientais Quim & Farmaceut, Diadema, SP, BrazilFAPESP: 2013/17332-6FAPESP: 2011/17587-9FAPESP: 2012/02428-5FAPESP: 2012/13807-7Web of Scienc

    Manejo de pomares de citros contra geadas.

    Get PDF
    bitstream/item/78770/1/documento-346.pd

    Antiproteinuric and Hyperkalemic Mechanisms Activated by Dual Versus Single Blockade of the RAS in Renovascular Hypertensive Rats

    Get PDF
    This study aimed to investigate the antiproteinuric and hyperkalemic mechanisms activated by dual renin-angiotensin system (RAS) blockade in renovascular hypertensive rats (2-kidney 1-clip model [2K-1C]). Six weeks after clipping the left renal artery or sham operation (2K), rats were treated with losartan, enalapril, or both drugs for two weeks. We found that 2K-1C rats displayed higher tail-cuff blood pressure (BP), increased non-clipped kidney Ang II concentration, and more pronounced urinary albumin excretion than 2K. BP was decreased by the treatment with either enalapril or losartan, and the combination of both drugs promoted an additional antihypertensive effect in 2K-1C rats. Renal Ang II content and albuminuria were reduced by either enalapril or losartan in monotherapy and restored to control levels by dual RAS blockade. Albuminuria in 2K-1C rats was accompanied by downregulation of the glomerular slit protein podocin, reduction of the endocytic receptors megalin and cubilin, and a marked decrease in the expression of the ClC-5 chloride channel, compared to 2K animals. Treatment with losartan and enalapril in monotherapy or combination increased the expression of podocin, cubilin, and ClC-5. However, only the combined therapy normalized podocin, cubilin, and ClC-5 protein abundance in the non-clipped kidney of 2K-1C rats. Renovascular hypertensive 2K-1C rats had a lower concentration of plasma potassium compared to 2K rats. Single RAS blockade normalized potassium plasma concentration, whereas 2K-1C rats treated with dual RAS blockade exhibited hyperkalemia. Hypokalemia in 2K-1C rats was accompanied by an increase in the cleaved activated forms of α-ENaC and γ-ENaC and the expression of β-ENaC. Combined RAS blockade but not monotherapy significantly reduced the expression of these ENaC subunits in 2K-1C rats. Indeed, double RAS blockade reduced the abundance of cleaved-α-ENaC to levels lower than those of 2K rats. Collectively, these results demonstrate that the antiproteinuric effect of dual RAS blockade in 2K-1C rats is associated with the restored abundance of podocin and cubilin, and ClC-5. Moreover, double RAS blockade-induced hyperkalemia may be due, at least partially, to an exaggerated downregulation of cleaved α-ENaC in the non-clipped kidney of renovascular hypertensive rats

    Effect of immediate or delayed light-activation on curing kinetics and shrinkage stress of dual-cure resin cements

    Get PDF
    Objectives: This study evaluated the effect of light activation (absence, immediate, or delayed) on conversion kinetics and polymerization stress of three commercial dual-cured resin cements (Enforce, RelyX ARC, and Panavia F). Methods: Degree of conversion (DC) was monitored for 30 minutes using real-time near Fourier transform infrared spectroscopy. The cement was mixed, placed on the spectrometer sample holder, and light activated either immediately or after five minutes (delayed light activation). When no light activation was performed, the materials were protected from light exposure (control). DC was evaluated at five and 30 minutes postmixture. Maximum rates of polymerization (Rpmax) were obtained from the first derivative of the DC vs time curve. Polymerization stress was monitored for 30 minutes in 1-mm-thick specimens inserted between two cylinders attached to a universal testing machine. Data were submitted to analysis of variance/Tukey tests (a¼0.05). Results: Immediate light activation promoted the highest DC at five minutes. At 30 minutes, only RelyX ARC did not present a significant difference in DC between activation modes. Enforce and Panavia F presented higher Rpmax for immediate and delayed light-activation, respectively. RelyX ARC showed similar Rpmax for all activation modes. The absence of light activation resulted in the lowest stress followed by delayed light activation, while immediate light activation led to the highest values. RelyX ARC showed higher stress than Enforce, while the stress of Panavia F was similar to that of the others. Conclusion: Delayed light activation reduced the polymerization stress of the resin cements tested without jeopardizing DC

    Automatic assessment of glioma burden: A deep learning algorithm for fully automated volumetric and bi-dimensional measurement

    Get PDF
    Background Longitudinal measurement of glioma burden with MRI is the basis for treatment response assessment. In this study, we developed a deep learning algorithm that automatically segments abnormal fluid attenuated inversion recovery (FLAIR) hyperintensity and contrast-enhancing tumor, quantitating tumor volumes as well as the product of maximum bidimensional diameters according to the Response Assessment in Neuro-Oncology (RANO) criteria (AutoRANO). Methods Two cohorts of patients were used for this study. One consisted of 843 preoperative MRIs from 843 patients with low- or high-grade gliomas from 4 institutions and the second consisted of 713 longitudinal postoperative MRI visits from 54 patients with newly diagnosed glioblastomas (each with 2 pretreatment “baseline” MRIs) from 1 institution. Results The automatically generated FLAIR hyperintensity volume, contrast-enhancing tumor volume, and AutoRANO were highly repeatable for the double-baseline visits, with an intraclass correlation coefficient (ICC) of 0.986, 0.991, and 0.977, respectively, on the cohort of postoperative GBM patients. Furthermore, there was high agreement between manually and automatically measured tumor volumes, with ICC values of 0.915, 0.924, and 0.965 for preoperative FLAIR hyperintensity, postoperative FLAIR hyperintensity, and postoperative contrast-enhancing tumor volumes, respectively. Lastly, the ICCs for comparing manually and automatically derived longitudinal changes in tumor burden were 0.917, 0.966, and 0.850 for FLAIR hyperintensity volume, contrast-enhancing tumor volume, and RANO measures, respectively. Conclusions Our automated algorithm demonstrates potential utility for evaluating tumor burden in complex posttreatment settings, although further validation in multicenter clinical trials will be needed prior to widespread implementation
    corecore