15 research outputs found

    Theory of Melting and the Optical Properties of Gold/DNA Nanocomposites

    Full text link
    We describe a simple model for the melting and optical properties of a DNA/gold nanoparticle aggregate. The optical properties at fixed wavelength change dramatically at the melting transition, which is found to be higher and narrower in temperature for larger particles, and much sharper than that of an isolated DNA link. All these features are in agreement with available experiments. The aggregate is modeled as a cluster of gold nanoparticles on a periodic lattice connected by DNA bonds, and the extinction coefficient is computed using the discrete dipole approximation. Melting takes place as an increasing number of these bonds break with increasing temperature. The melting temperature corresponds approximately to the bond percolation threshold.Comment: 5 pages, 4 figure. To be published in Phys. Rev.

    Structure Formation, Melting, and the Optical Properties of Gold/DNA Nanocomposites: Effects of Relaxation Time

    Full text link
    We present a model for structure formation, melting, and optical properties of gold/DNA nanocomposites. These composites consist of a collection of gold nanoparticles (of radius 50 nm or less) which are bound together by links made up of DNA strands. In our structural model, the nanocomposite forms from a series of Monte Carlo steps, each involving reaction-limited cluster-cluster aggregation (RLCA) followed by dehybridization of the DNA links. These links form with a probability peffp_{eff} which depends on temperature and particle radius aa. The final structure depends on the number of monomers (i. e. gold nanoparticles) NmN_m, TT, and the relaxation time. At low temperature, the model results in an RLCA cluster. But after a long enough relaxation time, the nanocomposite reduces to a compact, non-fractal cluster. We calculate the optical properties of the resulting aggregates using the Discrete Dipole Approximation. Despite the restructuring, the melting transition (as seen in the extinction coefficient at wavelength 520 nm) remains sharp, and the melting temperature TMT_M increases with increasing aa as found in our previous percolation model. However, restructuring increases the corresponding link fraction at melting to a value well above the percolation threshold. Our calculated extinction cross section agrees qualitatively with experiments on gold/DNA composites. It also shows a characteristic ``rebound effect,'' resulting from incomplete relaxation, which has also been seen in some experiments. We discuss briefly how our results relate to a possible sol-gel transition in these aggregates.Comment: 12 pages, 10 figure

    Molecular Dynamics for Fermions

    Full text link
    The time-dependent variational principle for many-body trial states is used to discuss the relation between the approaches of different molecular dynamics models to describe indistinguishable fermions. Early attempts to include effects of the Pauli principle by means of nonlocal potentials as well as more recent models which work with antisymmetrized many-body states are reviewed under these premises. Keywords: Many-body theory; Fermion system; Molecular dynamics; Wave-packet dynamics; Time-dependent variational principle; Statistical properties; Canonical ensemble; Ergodicity; Time averagingComment: 97 pages, 13 postscript figures. To be published in July 2000 issue of Reviews of Modern Physics. More information at http://www-aix.gsi.de/~fmd

    The Cholecystectomy As A Day Case (CAAD) Score: A Validated Score of Preoperative Predictors of Successful Day-Case Cholecystectomy Using the CholeS Data Set

    Get PDF
    Background Day-case surgery is associated with significant patient and cost benefits. However, only 43% of cholecystectomy patients are discharged home the same day. One hypothesis is day-case cholecystectomy rates, defined as patients discharged the same day as their operation, may be improved by better assessment of patients using standard preoperative variables. Methods Data were extracted from a prospectively collected data set of cholecystectomy patients from 166 UK and Irish hospitals (CholeS). Cholecystectomies performed as elective procedures were divided into main (75%) and validation (25%) data sets. Preoperative predictors were identified, and a risk score of failed day case was devised using multivariate logistic regression. Receiver operating curve analysis was used to validate the score in the validation data set. Results Of the 7426 elective cholecystectomies performed, 49% of these were discharged home the same day. Same-day discharge following cholecystectomy was less likely with older patients (OR 0.18, 95% CI 0.15–0.23), higher ASA scores (OR 0.19, 95% CI 0.15–0.23), complicated cholelithiasis (OR 0.38, 95% CI 0.31 to 0.48), male gender (OR 0.66, 95% CI 0.58–0.74), previous acute gallstone-related admissions (OR 0.54, 95% CI 0.48–0.60) and preoperative endoscopic intervention (OR 0.40, 95% CI 0.34–0.47). The CAAD score was developed using these variables. When applied to the validation subgroup, a CAAD score of ≤5 was associated with 80.8% successful day-case cholecystectomy compared with 19.2% associated with a CAAD score >5 (p < 0.001). Conclusions The CAAD score which utilises data readily available from clinic letters and electronic sources can predict same-day discharges following cholecystectomy

    Protein-DNA charge transport: Redox activation of a DNA repair protein by guanine radical

    No full text
    DNA charge transport (CT) chemistry provides a route to carry out oxidative DNA damage from a distance in a reaction that is sensitive to DNA mismatches and lesions. Here, DNA-mediated CT also leads to oxidation of a DNA-bound base excision repair enzyme, MutY. DNA-bound Ru(III), generated through a flash/quench technique, is found to promote oxidation of the [4Fe-4S]2+ cluster of MutY to [4Fe-4S]3+ and its decomposition product [3Fe-4S]1+. Flash/quench experiments monitored by EPR spectroscopy reveal spectra with g = 2.08, 2.06, and 2.02, characteristic of the oxidized clusters. Transient absorption spectra of poly(dGC) and [Ru(phen)2dppz]3+ (dppz = dipyridophenazine), generated in situ, show an absorption characteristic of the guanine radical that is depleted in the presence of MutY with formation instead of a long-lived species with an absorption at 405 nm; we attribute this absorption also to formation of the oxidized [4Fe-4S]3+ and [3Fe-4S]1+ clusters. In ruthenium-tethered DNA assemblies, oxidative damage to the 5′-G of a 5′-GG-3′ doublet is generated from a distance but this irreversible damage is inhibited by MutY and instead EPR experiments reveal cluster oxidation. With ruthenium-tethered assemblies containing duplex versus single-stranded regions, MutY oxidation is found to be mediated by the DNA duplex, with guanine radical as an intermediate oxidant; guanine radical formation facilitates MutY oxidation. A model is proposed for the redox activation of DNA repair proteins through DNA CT, with guanine radicals, the first product under oxidative stress, in oxidizing the DNA-bound repair proteins, providing the signal to stimulate DNA repair
    corecore