We describe a simple model for the melting and optical properties of a
DNA/gold nanoparticle aggregate. The optical properties at fixed wavelength
change dramatically at the melting transition, which is found to be higher and
narrower in temperature for larger particles, and much sharper than that of an
isolated DNA link. All these features are in agreement with available
experiments. The aggregate is modeled as a cluster of gold nanoparticles on a
periodic lattice connected by DNA bonds, and the extinction coefficient is
computed using the discrete dipole approximation. Melting takes place as an
increasing number of these bonds break with increasing temperature. The melting
temperature corresponds approximately to the bond percolation threshold.Comment: 5 pages, 4 figure. To be published in Phys. Rev.