521 research outputs found

    Apology and forgiveness evolve to resolve failures in cooperative agreements

    Get PDF
    Making agreements on how to behave has been shown to be an evolutionarily viable strategy in one-shot social dilemmas. However, in many situations agreements aim to establish long-term mutually beneficial interactions. Our analytical and numerical results reveal for the first time under which conditions revenge, apology and forgiveness can evolve and deal with mistakes within ongoing agreements in the context of the Iterated Prisoners Dilemma. We show that, when the agreement fails, participants prefer to take revenge by defecting in the subsisting encounters. Incorporating costly apology and forgiveness reveals that, even when mistakes are frequent, there exists a sincerity threshold for which mistakes will not lead to the destruction of the agreement, inducing even higher levels of cooperation. In short, even when to err is human, revenge, apology and forgiveness are evolutionarily viable strategies which play an important role in inducing cooperation in repeated dilemmas.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    CD62L (L-selectin) shedding for assessment of perioperative immune sensitivity in patients undergoing cardiac surgery with cardiopulmonary bypass

    Get PDF
    OBJECTIVE: To investigate the suitability of blood granulocyte and monocyte sensitivity, as measured by the quantity of different agonists required to induce CD62L shedding, for assessment of perioperative immune changes in patients undergoing cardiac surgery with cardiopulmonary bypass. METHODS: Patients scheduled for aortocoronary bypass grafting or for valve surgery were included in this prospective observational study. Blood samples were drawn before anesthesia induction, directly after surgery and 48 hours after anesthesia induction. We determined the concentration of two different inflammatory stimuli--lipoteichoic acid (LTA) and tumor necrosis factor alpha (TNF)--required to induce shedding of 50% of surface CD62L from blood granulocytes and monocytes. In parallel monocyte surface human leukocyte antigen (HLA)-DR, and plasma interleukin (IL)-8, soluble (s)CD62L, soluble (s)Toll-like receptor (TLR)-2 and ADAM17 quantification were used to illustrate perioperative immunomodulation. RESULTS: 25 patients were enrolled. Blood granulocytes and monocytes showed decreased sensitivity to the TLR 2/6 agonist Staphylococcus aureus LTA immediately after surgery (p = 0.001 and p = 0.004 respectively). In contrast, granulocytes (p = 0.01), but not monocytes (p = 0.057) displayed a decreased postoperative sensitivity to TNF. We confirmed the presence of a systemic inflammatory response and a decreased immune sensitivity in the post-surgical period by measuring significant increases in the perioperative plasma concentration of IL-8 (p </= 0.001) and sTLR (p = 0.004), and decreases in monocyte HLA-DR (p<0.001), plasma sCD62L (p </= 0.001). In contrast, ADAM17 plasma levels did not show significant differences over the observation period (p = 0.401). CONCLUSIONS: Monitoring granulocyte and monocyte sensitivity using the "CD62L shedding assay" in the perioperative period in cardiac surgical patients treated with the use of cardiopulmonary bypass reveals common changes in sensitivity to TLR2/6 ligands and to TNF stimulus. Further long-term follow-up studies will address the predictive value of these observations for clinical purposes

    Transcriptional Activation of OsDERF1 in OsERF3 and OsAP2-39 Negatively Modulates Ethylene Synthesis and Drought Tolerance in Rice

    Get PDF
    The phytohormone ethylene is a key signaling molecule that regulates a variety of developmental processes and stress responses in plants. Transcriptional modulation is a pivotal process controlling ethylene synthesis, which further triggers the expression of stress-related genes and plant adaptation to stresses; however, it is unclear how this process is transcriptionally modulated in rice. In the present research, we report the transcriptional regulation of a novel rice ethylene response factor (ERF) in ethylene synthesis and drought tolerance. Through analysis of transcriptional data, one of the drought-responsive ERF genes, OsDERF1, was identified for its activation in response to drought, ethylene and abscisic acid. Transgenic plants overexpressing OsDERF1 (OE) led to reduced tolerance to drought stress in rice at seedling stage, while knockdown of OsDERF1 (RI) expression conferred enhanced tolerance at seedling and tillering stages. This regulation was supported by negative modulation in osmotic adjustment response. To elucidate the molecular basis of drought tolerance, we identified the target genes of OsDERF1 using the Affymetrix GeneChip, including the activation of cluster stress-related negative regulators such as ERF repressors. Biochemical and molecular approaches showed that OsDERF1 at least directly interacted with the GCC box in the promoters of ERF repressors OsERF3 and OsAP2-39. Further investigations showed that OE seedlings had reduced expression (while RI lines showed enhanced expression) of ethylene synthesis genes, thereby resulting in changes in ethylene production. Moreover, overexpression of OsERF3/OsAP2-39 suppressed ethylene synthesis. In addition, application of ACC recovered the drought-sensitive phenotype in the lines overexpressing OsERF3, showing that ethylene production contributed to drought response in rice. Thus our data reveal that a novel ERF transcriptional cascade modulates drought response through controlling the ethylene synthesis, deepening our understanding of the regulation of ERF proteins in ethylene related drought response

    Modeling of miRNA and Drug Action in the EGFR Signaling Pathway

    Get PDF
    MicroRNAs have gained significant interest due to their widespread occurrence and diverse functions as regulatory molecules, which are essential for cell division, growth, development and apoptosis in eukaryotes. The epidermal growth factor receptor (EGFR) signaling pathway is one of the best investigated cellular signaling pathways regulating important cellular processes and its deregulation is associated with severe diseases, such as cancer. In this study, we introduce a systems biological model of the EGFR signaling pathway integrating validated miRNA-target information according to diverse studies, in order to demonstrate essential roles of miRNA within this pathway. The model consists of 1241 reactions and contains 241 miRNAs. We analyze the impact of 100 specific miRNA inhibitors (anit-miRNAs) on this pathway and propose that the embedded miRNA-network can help to identify new drug targets of the EGFR signaling pathway and thereby support the development of new therapeutic strategies against cancer

    Autoantibodies to muscarinic acetylcholine receptors found in patients with primary biliary cirrhosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autoantibodies to the human muscarinic acetylcholine receptor of the M3 type (hmAchR M3) have been suggested to play an etiopathogenic role in Sjögren's syndrome. Primary biliary cirrhosis (PBC) often is associated with this syndrome. Therefore, we studied the co-presence of hmAchR M3 autoantibodies in patients with PBC.</p> <p>Methods</p> <p>Frequency of hmAchR M3 autoantibodies was assessed by Western blotting analysis as well as by an ELISA using a 25-mer peptide of the 2<sup>nd </sup>extracellular loop of hmAchR M3. Co-localization of hmAchR M3/PBC-specific autoantibodies was studied by confocal laser scanning microscopy. Finally, sera from patients with PBC as well as from healthy controls were tested.</p> <p>Results</p> <p>Western blotting analysis as well as results from ELISA testing revealed a significantly enhanced IgG reactivity in PBC patients in contrast to healthy controls. Co-localization of autoantibodies with the hmAchR M3 receptor-specific autoantibodies was observed in 10 out of 12 PBC-patients but none of the 5 healthy controls. Antibodies of the IgM type were not found to be affected.</p> <p>Conclusions</p> <p>For the first time, our data demonstrate the presence of autoantibodies to the hmAchR M3 in PBC patients. These findings might contribute to the understanding of the pathogenesis of this disease. Further studies have to focus on the functionality of hmAchR M3 autoantibodies in PBC patients.</p

    Assessing non-Mendelian inheritance in inherited axonopathies

    Get PDF
    PURPOSE: Inherited axonopathies (IA) are rare, clinically and genetically heterogeneous diseases that lead to length-dependent degeneration of the long axons in central (hereditary spastic paraplegia [HSP]) and peripheral (Charcot–Marie–Tooth type 2 [CMT2]) nervous systems. Mendelian high-penetrance alleles in over 100 different genes have been shown to cause IA; however, about 50% of IA cases do not receive a genetic diagnosis. A more comprehensive spectrum of causative genes and alleles is warranted, including causative and risk alleles, as well as oligogenic multilocus inheritance. METHODS: Through international collaboration, IA exome studies are beginning to be sufficiently powered to perform a pilot rare variant burden analysis. After extensive quality control, our cohort contained 343 CMT cases, 515 HSP cases, and 935 non-neurological controls. We assessed the cumulative mutational burden across disease genes, explored the evidence for multilocus inheritance, and performed an exome-wide rare variant burden analysis. RESULTS: We replicated the previously described mutational burden in a much larger cohort of CMT cases, and observed the same effect in HSP cases. We identified a preliminary risk allele for CMT in the EXOC4 gene (p value= 6.9 × 10-6, odds ratio [OR] = 2.1) and explored the possibility of multilocus inheritance in IA. CONCLUSION: Our results support the continuing emergence of complex inheritance mechanisms in historically Mendelian disorders

    The Role of Zinc in the Modulation of Neuronal Proliferation and Apoptosis

    Get PDF
    Although a requirement of zinc (Zn) for normal brain development is well documented, the extent to which Zn can modulate neuronal proliferation and apoptosis is not clear. Thus, we investigated the role of Zn in the regulation of these two critical events. A low Zn availability leads to decreased cell viability in human neuroblastoma IMR-32 cells and primary cultures of rat cortical neurons. This occurs in part as a consequence of decreased cell proliferation and increased apoptotic cell death. In IMR-32 cells, Zn deficiency led to the inhibition of cell proliferation through the arrest of the cell cycle at the G0/G1 phase. Zn deficiency induced apoptosis in both proliferating and quiescent neuronal cells via the intrinsic apoptotic pathway. Reductions in cellular Zn triggered a translocation of the pro-apoptotic protein Bad to the mitochondria, cytochrome c release, and caspase-3 activation. Apoptosis is the resultant of the inhibition of the prosurvival extracellular-signal-regulated kinase, the inhibition of nuclear factor-kappa B, and associated decreased expression of antiapoptotic proteins, and to a direct activation of caspase-3. A deficit of Zn during critical developmental periods can have persistent effects on brain function secondary to a deregulation of neuronal proliferation and apoptosis

    A Gain-of-Function Germline Mutation in Drosophila ras1 Affects Apoptosis and Cell Fate during Development

    Get PDF
    The RAS/MAPK signal transduction pathway is an intracellular signaling cascade that transmits environmental signals from activated receptor tyrosine kinases (RTKs) on the cell surface and other endomembranes to transcription factors in the nucleus, thereby linking extracellular stimuli to changes in gene expression. Largely as a consequence of its role in oncogenesis, RAS signaling has been the subject of intense research efforts for many years. More recently, it has been shown that milder perturbations in Ras signaling during embryogenesis also contribute to the etiology of a group of human diseases. Here we report the identification and characterization of the first gain-of-function germline mutation in Drosophila ras1 (ras85D), the Drosophila homolog of human K-ras, N-ras and H-ras. A single amino acid substitution (R68Q) in the highly conserved switch II region of Ras causes a defective protein with reduced intrinsic GTPase activity, but with normal sensitivity to GAP stimulation. The ras1R68Q mutant is homozygous viable but causes various developmental defects associated with elevated Ras signaling, including cell fate changes and ectopic survival of cells in the nervous system. These biochemical and functional properties are reminiscent of germline Ras mutants found in patients afflicted with Noonan, Costello or cardio-facio-cutaneous syndromes. Finally, we used ras1R68Q to identify novel genes that interact with Ras and suppress cell death
    corecore