529 research outputs found

    Co expression of SCF and KIT in gastrointestinal stromal tumours (GISTs) suggests an autocrine/paracrine mechanism

    Get PDF
    KIT is a tyrosine kinase receptor expressed by several tumours, which has for specific ligand the stem cell factor (SCF). KIT is the main oncogene in gastrointestinal stromal tumours (GISTs), and gain-of-function KIT mutations are present in 70% of these tumours. The aim of the study was to measure and investigate the mechanisms of KIT activation in 80 KIT-positive GIST patients. KIT activation was quantified by detecting phosphotyrosine residues in Western blotting. SCF production was determined by reverse transcriptase–PCR, ELISA and/or immunohistochemistry. Primary cultures established from three GISTs were also analysed. The results show that KIT activation was detected in all cases, even in absence of KIT mutations. The fraction of activated KIT was not correlated with the mutational status of GISTs. Membrane and soluble isoforms of SCF mRNA were present in all GISTs analysed. Additionally, SCF was also detected in up to 93% of GISTs, and seen to be present within GIST cells. Likewise, the two SCF mRNA isoforms were found to be expressed in GIST-derived primary cultures. Thus, KIT activation in GISTs may in part result from the presence of SCF within the tumours

    Using equity premium survey data to estimate future wealth

    Get PDF
    We present the first systematic methods for combining different experts' responses to equity premium surveys. These techniques are based on the observation that the survey data are approximately gamma distributed. This distribution has convenient analytical properties that enable us to address three important problems that investment managers must face. First, we construct probability density functions for the future values of equity index tracker funds. Second, we calculate unbiased and minimum least square error estimators of the future value of these funds. Third, we derive optimal asset allocation weights between equities and the risk-free asset for risk-averse investors. Our analysis allows for both herding and biasedness in expert responses. We show that, unless investors are highly uncertain about expert biases or forecasts are very highly correlated, many investment decisions can be based solely on the mean of the survey data minus any expected bias. We also make recommendations for the design of future equity premium surveys

    Apology and forgiveness evolve to resolve failures in cooperative agreements

    Get PDF
    Making agreements on how to behave has been shown to be an evolutionarily viable strategy in one-shot social dilemmas. However, in many situations agreements aim to establish long-term mutually beneficial interactions. Our analytical and numerical results reveal for the first time under which conditions revenge, apology and forgiveness can evolve and deal with mistakes within ongoing agreements in the context of the Iterated Prisoners Dilemma. We show that, when the agreement fails, participants prefer to take revenge by defecting in the subsisting encounters. Incorporating costly apology and forgiveness reveals that, even when mistakes are frequent, there exists a sincerity threshold for which mistakes will not lead to the destruction of the agreement, inducing even higher levels of cooperation. In short, even when to err is human, revenge, apology and forgiveness are evolutionarily viable strategies which play an important role in inducing cooperation in repeated dilemmas.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    The Mind and the Machine. On the Conceptual and Moral Implications of Brain-Machine Interaction

    Get PDF
    Brain-machine interfaces are a growing field of research and application. The increasing possibilities to connect the human brain to electronic devices and computer software can be put to use in medicine, the military, and entertainment. Concrete technologies include cochlear implants, Deep Brain Stimulation, neurofeedback and neuroprosthesis. The expectations for the near and further future are high, though it is difficult to separate hope from hype. The focus in this paper is on the effects that these new technologies may have on our β€˜symbolic order’—on the ways in which popular categories and concepts may change or be reinterpreted. First, the blurring distinction between man and machine and the idea of the cyborg are discussed. It is argued that the morally relevant difference is that between persons and non-persons, which does not necessarily coincide with the distinction between man and machine. The concept of the person remains useful. It may, however, become more difficult to assess the limits of the human body. Next, the distinction between body and mind is discussed. The mind is increasingly seen as a function of the brain, and thus understood in bodily and mechanical terms. This raises questions concerning concepts of free will and moral responsibility that may have far reaching consequences in the field of law, where some have argued for a revision of our criminal justice system, from retributivist to consequentialist. Even without such a (unlikely and unwarranted) revision occurring, brain-machine interactions raise many interesting questions regarding distribution and attribution of responsibility

    The RIP140 Gene Is a Transcriptional Target of E2F1

    Get PDF
    RIP140 is a transcriptional coregulator involved in energy homeostasis and ovulation which is controlled at the transcriptional level by several nuclear receptors. We demonstrate here that RIP140 is a novel target gene of the E2F1 transcription factor. Bioinformatics analysis, gel shift assay, and chromatin immunoprecipitation demonstrate that the RIP140 promoter contains bona fide E2F response elements. In transiently transfected MCF-7 breast cancer cells, the RIP140 promoter is transactivated by overexpression of E2F1/DP1. Interestingly, RIP140 mRNA is finely regulated during cell cycle progression (5-fold increase at the G1/S and G2/M transitions). The positive regulation by E2F1 requires sequences located in the proximal region of the promoter (βˆ’73/+167), involves Sp1 transcription factors, and undergoes a negative feedback control by RIP140. Finally, we show that E2F1 participates in the induction of RIP140 expression during adipocyte differentiation. Altogether, this work identifies the RIP140 gene as a new transcriptional target of E2F1 which may explain some of the effect of E2F1 in both cancer and metabolic diseases

    A Novel Function of Apolipoprotein E: Upregulation of ATP-Binding Cassette Transporter A1 Expression

    Get PDF
    Despite the well known importance of apolipoprotein (Apo) E in cholesterol efflux, the effect of ApoE on the expression of ATP-binding cassette transporter A1 (ABCA1) has never been investigated. The objective of this study was to determine the effect of ApoE on ApoB-carrying lipoprotein-induced expression of ABCA1, a protein that mediates cholesterol efflux. Our data demonstrate that ApoB-carrying lipoproteins obtained from both wild-type and ApoE knockout mice induced ApoAI-mediated cholesterol efflux in mouse macrophages, which was associated with an enhanced ABCA1 promoter activity, and an increased ABCA1 mRNA and protein expression. In addition, these lipoproteins increased the level of phosphorylated specificity protein 1 (Sp1) and the amount of Sp1 bound to the ABCA1 promoter. However, all these inductions were significantly diminished in cells treated with ApoE-free lipoproteins, when compared to those treated with wild-type lipoproteins. Enrichment with human ApoE3 reversed the reduced inducibility of ApoE-free lipoproteins. Moreover, we observed that inhibition of Sp1 DNA-binding by mithramycin A diminished ABCA1 expression and ApoAI-mediated cholesterol efflux induced by ApoB-carrying lipoproteins, and that mutation of the Sp1-binding motif in the ABCA1 promoter region diminished ApoB-carrying lipoprotein-induced ABCA1 promoter activity. Collectively, these data suggest that ApoE associated with ApoB-carrying lipoproteins has an upregulatory role on ABCA1 expression, and that induction of Sp1 phosphorylation is a mechanism by which ApoE upregulates ABCA1 expression

    Identification of novel target genes of nerve growth factor (NGF) in human mastocytoma cell line (HMC-1 (V560G c-Kit)) by transcriptome analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nerve growth factor (NGF) is a potent growth factor that plays a key role in neuronal cell differentiation and may also play a role in hematopoietic differentiation. It has been shown that NGF induced synergistic action for the colony formation of CD34 positive hematopoietic progenitor cells treated with macrophage-colony stimulating factor (M-CSF or CSF-1), or stem cell factor (SCF). However, the exact role of NGF in hematopoietic system is unclear. It is also not clear whether NGF mediated signals in hematopoietic cells are identical to those in neuronal cells.</p> <p>Results</p> <p>To study the signal transduction pathways induced by NGF treatment in hematopoietic cells, we utilized the mastocytoma cell line HMC-1(V560G c-Kit) which expresses the NGF receptor, tropomyosin-receptor-kinase (Trk)A, as well as the constitutively activated SCF receptor, V560G c-Kit, which can be inhibited completely by treatment with the potent tyrosine kinase inhibitor imatinib mesylate (imatinib). NGF rescues HMC-1(V560G c-Kit) cells from imatinib mediated cell death and promotes proliferation. To examine the NGF mediated proliferation and survival in these cells, we compared the NGF mediated upregulated genes (30 and 120 min after stimulation) to the downregulated genes by imatinib treatment (downregulation of c-Kit activity for 4 h) by transcriptome analysis. The following conclusions can be drawn from the microarray data: Firstly, gene expression profiling reveals 50% overlap of genes induced by NGF-TrkA with genes expressed downstream of V560G c-Kit. Secondly, NGF treatment does not enhance expression of genes involved in immune related functions that were down regulated by imatinib treatment. Thirdly, more than 55% of common upregulated genes are involved in cell proliferation and survival. Fourthly, we found Kruppel-like factor (KLF) 2 and Smad family member 7 (SMAD7) as the NGF mediated novel downstream genes in hematopoietic cells. Finally, the downregulation of KLF2 gene enhanced imatinib induced apoptosis.</p> <p>Conclusion</p> <p>NGF does not induce genes which are involved in immune related functions, but induces proliferation and survival signals in HMC-1(V560G c-Kit) cells. Furthermore, the current data provide novel candidate genes, KLF2 and SMAD7 which are induced by NGF/TrkA activation in hematopoietic cells. Since the depletion of KLF2 causes enhanced apoptosis of HMC-1(V560G c-Kit), KLF2 may play a role in the NGF mediated survival signal.</p

    Arabidopsis CaM Binding Protein CBP60g Contributes to MAMP-Induced SA Accumulation and Is Involved in Disease Resistance against Pseudomonas syringae

    Get PDF
    Salicylic acid (SA)-induced defense responses are important factors during effector triggered immunity and microbe-associated molecular pattern (MAMP)-induced immunity in plants. This article presents evidence that a member of the Arabidopsis CBP60 gene family, CBP60g, contributes to MAMP-triggered SA accumulation. CBP60g is inducible by both pathogen and MAMP treatments. Pseudomonas syringae growth is enhanced in cbp60g mutants. Expression profiles of a cbp60g mutant after MAMP treatment are similar to those of sid2 and pad4, suggesting a defect in SA signaling. Accordingly, cbp60g mutants accumulate less SA when treated with the MAMP flg22 or a P. syringae hrcC strain that activates MAMP signaling. MAMP-induced production of reactive oxygen species and callose deposition are unaffected in cbp60g mutants. CBP60g is a calmodulin-binding protein with a calmodulin-binding domain located near the N-terminus. Calmodulin binding is dependent on Ca2+. Mutations in CBP60g that abolish calmodulin binding prevent complementation of the SA production and bacterial growth defects of cbp60g mutants, indicating that calmodulin binding is essential for the function of CBP60g in defense signaling. These studies show that CBP60g constitutes a Ca2+ link between MAMP recognition and SA accumulation that is important for resistance to P. syringae

    Effect of the G375C and G346E Achondroplasia Mutations on FGFR3 Activation

    Get PDF
    Two mutations in FGFR3, G380R and G375C are known to cause achondroplasia, the most common form of human dwarfism. The G380R mutation accounts for 98% of the achondroplasia cases, and thus has been studied extensively. Here we study the effect of the G375C mutation on the phosphorylation and the cross-linking propensity of full-length FGFR3 in HEK 293 cells, and we compare the results to previously published results for the G380R mutant. We observe identical behavior of the two achondroplasia mutants in these experiments, a finding which supports a direct link between the severity of dwarfism phenotypes and the level and mechanism of FGFR3 over-activation. The mutations do not increase the cross-linking propensity of FGFR3, contrary to previous expectations that the achondroplasia mutations stabilize the FGFR3 dimers. Instead, the phosphorylation efficiency within un-liganded FGFR3 dimers is increased, and this increase is likely the underlying cause for pathogenesis in achondroplasia. We further investigate the G346E mutation, which has been reported to cause achondroplasia in one case. We find that this mutation does not increase FGFR3 phosphorylation and decreases FGFR3 cross-linking propensity, a finding which raises questions whether this mutation is indeed a genetic cause for human dwarfism

    Integrated Molecular-Morphologic Meningioma Classification: A Multicenter Retrospective Analysis, Retrospectively and Prospectively Validated

    Get PDF
    PURPOSE: Meningiomas are the most frequent primary intracranial tumors. Patient outcome varies widely from benign to highly aggressive, ultimately fatal courses. Reliable identification of risk of progression for individual patients is of pivotal importance. However, only biomarkers for highly aggressive tumors are established (CDKN2A/B and TERT), whereas no molecularly based stratification exists for the broad spectrum of patients with low- and intermediate-risk meningioma. METHODS: DNA methylation data and copy-number information were generated for 3,031 meningiomas (2,868 patients), and mutation data for 858 samples. DNA methylation subgroups, copy-number variations (CNVs), mutations, and WHO grading were analyzed. Prediction power for outcome was assessed in a retrospective cohort of 514 patients, validated on a retrospective cohort of 184, and on a prospective cohort of 287 multicenter cases. RESULTS: Both CNV- and methylation family-based subgrouping independently resulted in increased prediction accuracy of risk of recurrence compared with the WHO classification (c-indexes WHO 2016, CNV, and methylation family 0.699, 0.706, and 0.721, respectively). Merging all risk stratification approaches into an integrated molecular-morphologic score resulted in further substantial increase in accuracy (c-index 0.744). This integrated score consistently provided superior accuracy in all three cohorts, significantly outperforming WHO grading (c-index difference P = .005). Besides the overall stratification advantage, the integrated score separates more precisely for risk of progression at the diagnostically challenging interface of WHO grade 1 and grade 2 tumors (hazard ratio 4.34 [2.48-7.57] and 3.34 [1.28-8.72] retrospective and prospective validation cohorts, respectively). CONCLUSION: Merging these layers of histologic and molecular data into an integrated, three-tiered score significantly improves the precision in meningioma stratification. Implementation into diagnostic routine informs clinical decision making for patients with meningioma on the basis of robust outcome prediction
    • …
    corecore