14,937 research outputs found

    Construct, Merge, Solve and Adapt: Application to the repetition-free longest common subsequence problem

    Get PDF
    In this paper we present the application of a recently proposed, general, algorithm for combinatorial optimization to the repetition-free longest common subsequence problem. The applied algorithm, which is labelled Construct, Merge, Solve & Adapt, generates sub-instances based on merging the solution components found in randomly constructed solutions. These sub-instances are subsequently solved by means of an exact solver. Moreover, the considered sub-instances are dynamically changing due to adding new solution components at each iteration, and removing existing solution components on the basis of indicators about their usefulness. The results of applying this algorithm to the repetition-free longest common subsequence problem show that the algorithm generally outperforms competing approaches from the literature. Moreover, they show that the algorithm is competitive with CPLEX for small and medium size problem instances, whereas it outperforms CPLEX for larger problem instances.Peer ReviewedPostprint (author's final draft

    Calculating the hadronic vacuum polarization and leading hadronic contribution to the muon anomalous magnetic moment with improved staggered quarks

    Get PDF
    We present a lattice calculation of the hadronic vacuum polarization and the lowest-order hadronic contribution to the muon anomalous magnetic moment, a_\mu = (g-2)/2, using 2+1 flavors of improved staggered fermions. A precise fit to the low-q^2 region of the vacuum polarization is necessary to accurately extract the muon g-2. To obtain this fit, we use staggered chiral perturbation theory, including the vector particles as resonances, and compare these to polynomial fits to the lattice data. We discuss the fit results and associated systematic uncertainties, paying particular attention to the relative contributions of the pions and vector mesons. Using a single lattice spacing ensemble (a=0.086 fm), light quark masses as small as roughly one-tenth the strange quark mass, and volumes as large as (3.4 fm)^3, we find a_\mu^{HLO} = (713 \pm 15) \times 10^{-10} and (748 \pm 21) \times 10^{-10} where the error is statistical only and the two values correspond to linear and quadratic extrapolations in the light quark mass, respectively. Considering systematic uncertainties not eliminated in this study, we view this as agreement with the current best calculations using the experimental cross section for e^+e^- annihilation to hadrons, 692.4 (5.9) (2.4)\times 10^{-10}, and including the experimental decay rate of the tau lepton to hadrons, 711.0 (5.0) (0.8)(2.8)\times 10^{-10}. We discuss several ways to improve the current lattice calculation.Comment: 44 pages, 4 tables, 17 figures, more discussion on matching the chpt calculation to lattice calculation, typos corrected, refs added, version to appear in PR

    Dilemma that cannot be resolved by biased quantum coin flipping

    Full text link
    We show that a biased quantum coin flip (QCF) cannot provide the performance of a black-boxed biased coin flip, if it satisfies some fidelity conditions. Although such a QCF satisfies the security conditions of a biased coin flip, it does not realize the ideal functionality, and therefore, does not fulfill the demands for universally composable security. Moreover, through a comparison within a small restricted bias range, we show that an arbitrary QCF is distinguishable from a black-boxed coin flip unless it is unbiased on both sides of parties against insensitive cheating. We also point out the difficulty in developing cheat-sensitive quantum bit commitment in terms of the uncomposability of a QCF.Comment: 5 pages and 1 figure. Accepted versio

    The Refractory-to-Ice Mass Ratio in Comets

    Get PDF
    We review the complex relationship between the dust-to-gas mass ratio usually estimated in the material lost by comets, and the Refractory-to-Ice mass ratio inside the nucleus, which constrains the origin of comets. Such a relationship is dominated by the mass transfer from the perihelion erosion to fallout over most of the nucleus surface. This makes the Refractory-to-Ice mass ratio inside the nucleus up to ten times larger than the dust-to-gas mass ratio in the lost material, because the lost material is missing most of the refractories which were inside the pristine nucleus before the erosion. We review the Refractory-to-Ice mass ratios available for the comet nuclei visited by space missions, and for the Kuiper Belt Objects with well defined bulk density, finding the 1-σ lower limit of 3. Therefore, comets and KBOs may have less water than CI-chondrites, as predicted by models of comet formation by the gravitational collapse of cm-sized pebbles driven by streaming instabilities in the protoplanetary disc

    The Nt=6N_t=6 equation of state for two flavor QCD

    Full text link
    We improve the calculation of the equation of state for two flavor QCD by simulating on Nt=6N_t=6 lattices at appropriate values of the couplings for the deconfinement/chiral symmetry restoration crossover. For amq=0.0125am_q=0.0125 the energy density rises rapidly to approximately 1 GeV/fm3{\rm GeV/fm^3} just after the crossover(mπ/mρ0.4m_\pi/m_\rho\approx 0.4 at this point). Comparing with our previous result for Nt=4N_t=4~\cite{eos}, we find large finite NtN_t corrections as expected from free field theory on finite lattices. We also provide formulae for extracting the speed of sound from the measured quantities.Comment: Contribution to Lattice 95 proceedings (combines talks presented by T. Blum and L. Karkkainen). LaTeX, 8 pages, uses espcrc2.sty, postscript figures include

    Thermodynamics for two flavor QCD

    Get PDF
    We conclude our analysis of the N_t=6 equation of state for two flavor QCD, first described at last year's conference. We have obtained new runs at am_q=0.025 and improved runs at am_q=0.0125. The results are extrapolated to m_q=0, and we extract the speed of sound as well. We also present evidence for a restoration of the SU(2) X SU(2) chiral symmetry just above the crossover, but not of the axial U(1) chiral symmetry.Comment: Poster presented at LATTICE96(finite temperature). 4 pages, LaTeX plus 5 encapsulated Postscript figure

    Scaling in Complex Systems: Analytical Theory of Charged Pores

    Full text link
    In this paper we find an analytical solution of the equilibrium ion distribution for a toroidal model of a ionic channel, using the Perfect Screening Theorem (PST). The ions are charged hard spheres, and are treated using a variational Mean Spherical Approximation (VMSA) . Understanding ion channels is still a very open problem, because of the many exquisite tuning details of real life channels. It is clear that the electric field plays a major role in the channel behaviour, and for that reason there has been a lot of work on simple models that are able to provide workable theories. Recently a number of interesting papers have appeared that discuss models in which the effect of the geometry, excluded volume and non-linear behaviour is considered. We present here a 3D model of ionic channels which consists of a charged, deformable torus with a circular or elliptical cross section, which can be flat or vertical (close to a cylinder). Extensive comparisons to MC simulations were performed. The new solution opens new possibilities, such as studying flexible pores, and water phase transformations inside the pores using an approach similar to that used on flat crystal surfaces
    corecore