54 research outputs found

    Investigation of the spectra of coupled polaritons on the periodically modulated metallic layer and the narrow regions of anomalous transparency

    Full text link
    The paper deals with the theoretical investigation of plane, normally incident electromagnetic wave transmission through the flat metal film whose dielectric constant has small periodical sinusoidal modulation in one dimension parallel to the projection of the electric field onto the film surface. The dependencies of the film transmittancy on the parameters of the problem (frequency, modulation depth and absorption) are examined. It is shown that the film transmittancy increases considerably when the conditions for resonance interaction of an incident electromagnetic wave with surface plasmon polaritons (SPPs) are met. It is found that for small but finite absorption there are two frequencies in the vicinity of which the transmittancy can achieve the values of the order of unity due to resonances on symmetric and antisymmetric (relative to the mean plane) SPP modes. It is shown that for each value of absorption there exists a certain optimal modulation depth, which maximizes the resonance transparency.Comment: 18 pages, 8 figures, proceeding of conference "Plasmonics: metallic nanostructures and their optical properties", SPIE's 48-th Annual Meeting, 3-8 August, 2003, San Diego, US

    Light scattering by a medium with a spatially modulated optical conductivity: the case of graphene

    Get PDF
    We describe light scattering from a graphene sheet having a modulated optical conductivity. We show that such modulation enables the excitation of surface plasmon-polaritons by an electromagnetic wave impinging at normal incidence. The resulting surface plasmon-polaritons are responsible for a substantial increase of electromagnetic radiation absorption by the graphene sheet. The origin of the modulation can be due either to a periodic strain field or to adatoms (or absorbed molecules) with a modulated adsorption profile.Comment: http://iopscience.iop.org/0953-8984/24/24/24530

    Graphene plasmons and retardation: strong light-matter coupling

    Full text link
    We study the retardation regime of doped graphene plasmons, given by the nominal crossing of the unretarded plasmon and light-cone. In addition to modifications in the plasmon dispersion relation, retardation implies strong coupling between propagating light and matter, even for homogeneous graphene, which opens up the possibility of efficient plasmonics in simple graphene devices. We exemplify this enhancement in a double-layer configuration that exhibits {\em perfect} (if lossless) light transmissions across a classically forbidden region, providing a simpler analog of the corresponding phenomenon in perforated metal sheets. We also show that (broad) Fabry-P\'erot resonances present without graphene turn into sharply peaked, quasi-discrete modes in the presence of graphene where graphene's response function is given by the typical Fano lineshape.Comment: 6 pages, 4 figure

    Rogue Waves: From Nonlinear Schrödinger Breather Solutions to Sea-Keeping Test

    Get PDF
    Under suitable assumptions, the nonlinear dynamics of surface gravity waves can be modeled by the one-dimensional nonlinear Schrödinger equation. Besides traveling wave solutions like solitons, this model admits also breather solutions that are now considered as prototypes of rogue waves in ocean. We propose a novel technique to study the interaction between waves and ships/structures during extreme ocean conditions using such breather solutions. In particular, we discuss a state of the art sea-keeping test in a 90-meter long wave tank by creating a Peregrine breather solution hitting a scaled chemical tanker and we discuss its potential devastating effects on the ship

    Tunable hybrid surface waves supported by a graphene layer

    Full text link
    We study surface waves localized near a surface of a semi-infinite dielectric medium covered by a layer of graphene in the presence of a strong external magnetic field. We demonstrate that both TE-TM hybrid surface plasmons can propagate along the graphene surface. We analyze the effect of the Hall conductivity on the disper- sion of hybrid surface waves and suggest a possibility to tune the plasmon dispersion by the magnetic field.Comment: 3 pages, 3 figure

    An escape of vector matter-wave soliton from a parabolic trap

    Get PDF
    We show that a vector matter–wave soliton in a Bose–Einstein condensate (BEC) loaded into an optical lattice can escape from a trap formed by a parabolic potential, resembling a Hawking emission. The particle–antiparticle pair is emulated by a low-amplitude bright–bright soliton in a two-component BEC with effective masses of opposite signs. It is shown that the parabolic potential leads to a spatial separation of BEC components. One component with chemical potential in a semi-infinite gap exerts periodical oscillations, while the other BEC component, with negative effective mass, escapes from the trap. The mechanism of atom transfer from one BEC component to another by spatially periodic linear coupling term is also discussed.Y.V.B. acknowledges the support from Portuguese Foundation for Science and Technology (FCT) through Grant No. UID/FIS/04650/2013. M.A.G.-N. thanks for the financial support of FONDECYT project 11130450.info:eu-repo/semantics/publishedVersio

    Vortex twins and anti-twins supported by multi-ring gain landscapes

    Full text link
    We address the properties of multi-vortex soliton complexes supported by multi-ring gain landscapes in focusing Kerr nonlinear media with strong two-photon absorption. Stable complexes incorporating two, three, or four vortices featuring opposite or identical topological charges are shown to exist. In the simplest geometries with two amplifying rings vortex twins with equal topological charges exhibit asymmetric intensity distributions, while vortex anti-twins may be symmetric or asymmetric, depending on the gain level and separation between rings. Different arrangements of amplifying rings allow generation of stable multi-vortex soliton complexes with various topologies, with twins and anti-twins as building blocks.Comment: 3 pages, 3 figures, to appear in Optics Letter

    Intrinsic Terahertz Plasmons and Magnetoplasmons in Large Scale Monolayer Graphene

    Get PDF
    We show that in graphene epitaxially grown on SiC the Drude absorption is transformed into a strong terahertz plasmonic peak due to natural nanoscale inhomogeneities, such as substrate terraces and wrinkles. The excitation of the plasmon modifies dramatically the magneto-optical response and in particular the Faraday rotation. This makes graphene a unique playground for plasmon-controlled magneto-optical phenomena thanks to a cyclotron mass 2 orders of magnitude smaller than in conventional plasmonic materials such as noble metals.Comment: to appear in Nano Letter

    Tunneling control and localization for Bose-Einstein condensates in a frequency modulated optical lattice

    Full text link
    The similarity between matter waves in periodic potential and solid-state physics processes has triggered the interest in quantum simulation using Bose-Fermi ultracold gases in optical lattices. The present work evidences the similarity between electrons moving under the application of oscillating electromagnetic fields and matter waves experiencing an optical lattice modulated by a frequency difference, equivalent to a spatially shaken periodic potential. We demonstrate that the tunneling properties of a Bose-Einstein condensate in shaken periodic potentials can be precisely controlled. We take additional crucial steps towards future applications of this method by proving that the strong shaking of the optical lattice preserves the coherence of the matter wavefunction and that the shaking parameters can be changed adiabatically, even in the presence of interactions. We induce reversibly the quantum phase transition to the Mott insulator in a driven periodic potential.Comment: Laser Physics (in press
    corecore