14 research outputs found

    Multiple scattering and attenuation corrections in Deep Inelastic Neutron Scattering experiments

    Full text link
    Multiple scattering and attenuation corrections in Deep Inelastic Neutron Scattering experiments are analyzed. The theoretical basis is stated, and a Monte Carlo procedure to perform the calculation is presented. The results are compared with experimental data. The importance of the accuracy in the description of the experimental parameters is tested, and the implications of the present results on the data analysis procedures is examined.Comment: 19 pages, 8 figure

    THE BARILOCHE NEUTRON PHYSICS GROUP CURRENT ACTIVITIES

    Get PDF
    Our group has evolved around a small accelerator-based neutron source (ABNS), the 25 million electron Volt (MeV) linear electron accelerator at the Bariloche Atomic Centre. It is dedicated to applications of neutronic methods to tackle problems of basic sciences and to technological applications. Among these, the determination of total cross section of a material as a function of neutron energy by means of transmission experiments for thermal and sub-thermal neutrons is very sensitive to the geometric arrangement and movement of the atoms, over distances ranging from the 'first-neighbour scale' up to the microstructural level or 'grain scale'. This also allowed to test theoretical models of calculated cross sections and scattering kernels. Interest has moved from pulsed neutron diffraction towards deep inelastic neutron scattering (DINS), a powerful tool for the determination of atomic momentum distribution in condensed matter and for non-destructive mass spectroscopy. In recent years non-intrusive techniques aimed at the scanning of large cargo containers have started to be developed with this ABNS, testing the capacity and limitations to detect special nuclear material and dangerous substances in thick cargo arrangements. More recently, the use of the ever-present “bremsstrahlung” radiation has been recognized as a useful complement to instrumental neutron activation, as it permits to detect other nuclear species through high-energy photon activation. The facility is also used for graduate and undergraduate students experimental work within the frame of Instituto Balseiro Physics and Nuclear Engineering courses of study, and also MSc and PhD theses work

    THE BARILOCHE NEUTRON PHYSICS GROUP CURRENT ACTIVITIES

    Get PDF
    Our group has evolved around a small accelerator-based neutron source (ABNS), the 25 million electron Volt (MeV) linear electron accelerator at the Bariloche Atomic Centre. It is dedicated to applications of neutronic methods to tackle problems of basic sciences and to technological applications. Among these, the determination of total cross section of a material as a function of neutron energy by means of transmission experiments for thermal and sub-thermal neutrons is very sensitive to the geometric arrangement and movement of the atoms, over distances ranging from the 'first-neighbour scale' up to the microstructural level or 'grain scale'. This also allowed to test theoretical models of calculated cross sections and scattering kernels. Interest has moved from pulsed neutron diffraction towards deep inelastic neutron scattering (DINS), a powerful tool for the determination of atomic momentum distribution in condensed matter and for non-destructive mass spectroscopy. In recent years non-intrusive techniques aimed at the scanning of large cargo containers have started to be developed with this ABNS, testing the capacity and limitations to detect special nuclear material and dangerous substances in thick cargo arrangements. More recently, the use of the ever-present “bremsstrahlung” radiation has been recognized as a useful complement to instrumental neutron activation, as it permits to detect other nuclear species through high-energy photon activation. The facility is also used for graduate and undergraduate students experimental work within the frame of Instituto Balseiro Physics and Nuclear Engineering courses of study, and also MSc and PhD theses work

    Analysis of multiple scattering and multiphonon contributions in inelastic neutron scattering experiments

    No full text
    We present a method of analysis of inelastic neutron scattering (INS) experiments aiming at obtaining the density of phonon states in an absolute scale, as well as a reliable value of the mean-square displacement of the atoms. This method requires the measurement of the neutron total cross section of the sample as a function of energy, which provides a normalization condition for the INS experiment, as well as a value of the mean-square displacement. The method is applied in the case of an incoherent neutron scattering system, viz. the Ti\u9652wt.% Zr alloy. The applicability of this method to the study of metal alloys and other systems is discussed

    Direct Computation of Shape Cues Using Scale-Adapted Spatial Derivative Operators

    No full text
    This paper addresses the problem of computing cues to the three-dimensional structure of surfaces in the world directly from the local structure of the brightness pattern of either a single monocular image or a binocular image pair. It is shown that starting from Gaussian derivatives of order up to two at a range of scales in scale-space, local estimates of (i) surface orientation from monocular texture foreshortening, (ii) surface orientation from monocular texture gradients, and (iii) surface orientation from the binocular disparity gradient can be computed without iteration or search, and by using essentially the same basic mechanism. The methodology is based on a multi-scale descriptor of image structure called the windowed second moment matrix, which is computed with adaptive selection of both scale levels and spatial positions. Notably, this descriptor comprises two scale parameters; a local scale parameter describing the amount of smoothing used in derivative computations, and a..
    corecore