594 research outputs found

    Delineation of geological problems for use in urban planning

    Get PDF
    Activities of the University of Alabama in support of state and local planning commissions are reported. Demonstrations were given of the various types of remotely sensed images available from U-2, Skylab, and LANDSAT; and their uses and limitations were discussed. Techniques to be used in determining flood prone areas were provided for environmental studies. A rapid, inexpensive method for study was developed by which imagery is copied on 35 mm film and projected on existing topographic maps for measuring delta volume and growth

    Neural representation of a spatial odor memory in the honeybee mushroom body

    Get PDF
    Nawrot MP, D'Albis T, Menzel R, Strube-Bloss M. Neural representation of a spatial odor memory in the honeybee mushroom body. BMC Neuroscience. 2015;16(S1): P240

    Kinetics of n-Butoxy and 2-Pentoxy Isomerization and Detection of Primary Products by Infrared Cavity Ringdown Spectroscopy

    Get PDF
    The primary products of n-butoxy and 2-pentoxy isomerization in the presence and absence of O_2 have been detected using pulsed laser photolysis-cavity ringdown spectroscopy (PLP-CRDS). Alkoxy radicals n-butoxy and 2-pentoxy were generated by photolysis of alkyl nitrite precursors (n-butyl nitrite or 2-pentyl nitrite, respectively), and the isomerization products with and without O_2 were detected by infrared cavity ringdown spectroscopy 20 μs after the photolysis. We report the mid-IR OH stretch (ν_1) absorption spectra for δ-HO-1-C_4H_8•, δ-HO-1-C_4H_8OO•, δ-HO-1-C_5H_(10)•, and δ-HO-1-C_5H_(10)OO•. The observed ν_1 bands are similar in position and shape to the related alcohols (n-butanol and 2-pentanol), although the HOROO• absorption is slightly stronger than the HOR• absorption. We determined the rate of isomerization relative to reaction with O_2 for the n-butoxy and 2-pentoxy radicals by measuring the relative ν_1 absorbance of HOROO• as a function of [O_2]. At 295 K and 670 Torr of N_2 or N_2/O_2, we found rate constant ratios of k_(isom)/k_(O2) = 1.7 (±0.1) × 10^(19) cm^(–3) for n-butoxy and k_(isom)/k_(O2) = 3.4(±0.4) × 10^(19) cm^(–3) for 2-pentoxy (2σ uncertainty). Using currently known rate constants k_(O2), we estimate isomerization rates of k_(isom) = 2.4 (±1.2) × 10^5 s^(–1) and k_(isom) ≈ 3 × 10^5 s^(–1) for n-butoxy and 2-pentoxy radicals, respectively, where the uncertainties are primarily due to uncertainties in k_(O2). Because isomerization is predicted to be in the high pressure limit at 670 Torr, these relative rates are expected to be the same at atmospheric pressure. Our results include corrections for prompt isomerization of hot nascent alkoxy radicals as well as reaction with background NO and unimolecular alkoxy decomposition. We estimate prompt isomerization yields under our conditions of 4 ± 2% and 5 ± 2% for n-butoxy and 2-pentoxy formed from photolysis of the alkyl nitrites at 351 nm. Our measured relative rate values are in good agreement with and more precise than previous end-product analysis studies conducted on the n-butoxy and 2-pentoxy systems. We show that reactions typically neglected in the analysis of alkoxy relative kinetics (decomposition, recombination with NO, and prompt isomerization) may need to be included to obtain accurate values of k_(isom)/k_(O2)

    Opportunities and challenges in the use of personal health data for health research

    Get PDF
    Objective: Understand barriers to the use of personal health data (PHD) in research from the perspective of three stakeholder groups: early adopter individuals who track data about their health, researchers who may use PHD as part of their research, and companies that market self-tracking devices, apps or services, and aggregate and manage the data that are generated. Materials and Methods: A targeted convenience sample of 465 individuals and 134 researchers completed an extensive online survey. Thirty-five hourlong semi-structured qualitative interviews were conducted with a subset of 11 individuals and 9 researchers, as well as 15 company/key informants. Results: Challenges to the use of PHD for research were identified in six areas: data ownership; data access for research; privacy; informed consent and ethics; research methods and data quality; and the unpredictable nature of the rapidly evolving ecosystem of devices, apps, and other services that leave “digital footprints.” Individuals reported willingness to anonymously share PHD if it would be used to advance research for the good of the public. Researchers were enthusiastic about using PHD for research, but noted barriers related to intellectual property, licensing, and the need for legal agreements with companies. Companies were interested in research but stressed that their first priority was maintaining customer relationships. Conclusion: Although challenges exist in leveraging PHD for research, there are many opportunities for stakeholder engagement, and experimentation with these data is already taking place. These early examples foreshadow a much larger set of activities with the potential to positively transform how health research is conducted

    Fast algorithms for histogram matching: Application to texture synthesis

    Get PDF
    Texture synthesis is the ability to create ensembles of images of similar structures from sample textures that have been photographed. The method we employ for texture synthesis is based on histogram matching of images at multiple scales and orientations. This paper reports two fast and in one case simple algorithms for histogram matching We show that the sort-matching and the optimal cumulative distribution function (CDF)-matching (OCM) algorithms provide high computational speed compared to that provided by the conventional approach. The sort-matching algorithm also provides exact histogram matching. Results of texture synthesis using either method show no subjective perceptual differences. The sort-matching algorithm is attractive because of its simplicity and speed, however as the size of the image increases, the OCM algorithm may be preferred for optimal computational speed

    Measurements of photo-oxidation products from the reaction of a series of alkyl-benzenes with hydroxyl radicals during EXACT using comprehensive gas chromatography

    Get PDF
    Photo-oxidation products from the reaction of a series of alkyl-benzenes, (benzene, toluene, <i>p</i>-xylene and 1,3,5-trimethyl-benzene) with hydroxyl radicals in the presence of NO<sub>x</sub> have been investigated using comprehensive gas chromatography (GCxGC). A GCxGC system has been developed which utilises valve modulation and independent separations as a function of both volatility and polarity. A number of carbonyl-type compounds were identified during a series of reactions carried out at the European Photoreactor (EUPHORE), a large volume outdoor reaction chamber in Valencia, Spain. Experiments were carried as part of the EXACT project (<b>E</b>ffects of the o<b>X</b>idation of <b>A</b>romatic <b>C</b>ompounds in the <b>T</b>roposphere). Two litre chamber air samples were cryo-focused, with a sampling frequency of 30 minutes, allowing the evolution of species to be followed over oxidation periods of 3-6 hours. To facilitate product identification, several carbonyl compounds, which were possible products of the photo-oxidation, were synthesised and used as reference standards.<br> <br> For toluene reactions, observed oxygenated intermediates found included the co-eluting pair <font face='Symbol'>a</font>-angelicalactone/4-oxo-2-pentenal, maleic anhydride, citraconic anhydride, benzaldehyde and <i>p</i>-methyl benzoquinone. In the <i>p</i>-xylene experiment, the products identified were E/Z-hex-3-en-2,5-dione and citraconic anhydride. For 1,3,5-TMB reactions, the products identified were 3,5-dimethylbenzaldehyde, 3,5-dimethyl-3H-furan-2-one and 3-methyl-5-methylene-5H-furan-2-one. Preliminary quantification was carried out on identified compounds using liquid standards. Comparison of FTIR and GCxGC for the measurement of the parent aromatics generally showed good agreement. Comparison of the concentrations observed by GCxGC to concentration-time profiles simulated using the Master Chemical Mechanism, MCMv3, demonstrates that this mechanism significantly over-predicts the concentrations of many product compounds and highlights the uncertainties which exist in our understanding of the atmospheric oxidation of aromatics

    Design of and initial results from a highly instrumented reactor for atmospheric chemistry (HIRAC)

    Get PDF
    International audienceThe design of a Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC) is described and initial results obtained from HIRAC are presented. The ability of HIRAC to perform in-situ laser-induced fluorescence detection of OH and HO2 radicals with the Fluorescence Assay by Gas Expansion (FAGE) technique establishes it as internationally unique for a chamber of its size and pressure/temperature variable capabilities. In addition to the FAGE technique, HIRAC features a suite of analytical instrumentation, including: a multipass FTIR system; a conventional gas chromatography (GC) instrument and a GC instrument for formaldehyde detection; and NO/NO2, CO, O3, and H2O vapour analysers. Ray tracing simulations and measurements of the blacklamp flux have been utilized to develop a detailed model of the radiation field within HIRAC. Comparisons between the analysers and the FTIR coupled to HIRAC have been performed, and HIRAC has also been used to investigate pressure dependent kinetics of the chlorine atom reaction with ethene and the reaction of O3 and t-2-butene. The results obtained are in good agreement with literature recommendations and Master Chemical Mechanism predictions. HIRAC thereby offers a highly instrumented platform with the potential for: (1) high precision kinetics investigations over a range of atmospheric conditions; (2) detailed mechanism development, significantly enhanced according to its capability for measuring radicals; and (3) field instrument intercomparison, calibration, development, and investigations of instrument response under a range of atmospheric conditions
    corecore