
University of Central Florida University of Central Florida

STARS STARS

Faculty Bibliography 2000s Faculty Bibliography

1-1-2000

Fast algorithms for histogram matching: Application to texture Fast algorithms for histogram matching: Application to texture

synthesis synthesis

J. P. Rolland
University of Central Florida

V. Vo
University of Central Florida

B. Bloss
University of Central Florida

C. K. Abbey

Find similar works at: https://stars.library.ucf.edu/facultybib2000

University of Central Florida Libraries http://library.ucf.edu

This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for

inclusion in Faculty Bibliography 2000s by an authorized administrator of STARS. For more information, please

contact STARS@ucf.edu.

Recommended Citation Recommended Citation
Rolland, J. P.; Vo, V.; Bloss, B.; and Abbey, C. K., "Fast algorithms for histogram matching: Application to
texture synthesis" (2000). Faculty Bibliography 2000s. 2777.
https://stars.library.ucf.edu/facultybib2000/2777

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/facultybib2000
https://stars.library.ucf.edu/facultybib
https://stars.library.ucf.edu/facultybib2000
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/facultybib2000/2777?utm_source=stars.library.ucf.edu%2Ffacultybib2000%2F2777&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

Fast algorithms for histogram matching:
Application to texture synthesis

J. P. Rolland
University of Central Florida
School of Optics and CREOL

School of Electrical Engineering and Computer Science
Orlando, Florida 32816

E-mail: rolland@creol.ucf.edu

V. Vo
B. Bloss

University of Central Florida
School of Electrical Engineering and Computer Science

Orlando, Florida 32816

C. K. Abbey*
University of Arizona

Program in Applied Mathematics
Tucson, Arizona 85724

Abstract. Texture synthesis is the ability to create ensembles of
images of similar structures from sample textures that have been
photographed. The method we employ for texture synthesis is
based on histogram matching of images at multiple scales and ori-
entations. This paper reports two fast and in one case simple algo-
rithms for histogram matching. We show that the sort-matching and
the optimal cumulative distribution function (CDF)-matching (OCM)
algorithms provide high computational speed compared to that pro-
vided by the conventional approach. The sort-matching algorithm
also provides exact histogram matching. Results of texture synthe-
sis using either method show no subjective perceptual differences.
The sort-matching algorithm is attractive because of its simplicity
and speed, however as the size of the image increases, the OCM
algorithm may be preferred for optimal computational speed.
© 2000 SPIE and IS&T. [S1017-9909(00)00601-2]

1 Introduction

Texture synthesis is the ability to create ensembles of im-
ages, that look visually similar in structure yet differ pixel
to pixel, from sample textures that have been photographed.
An important common application of texture synthesis is
real-time computer graphics where the objective is to gen-
erate textures ‘‘on the fly’’ to simulate realistic scenes,1–4

without the artifacts created from texture maps.5 Procedural

techniques have been developed for real-time texture
synthesis.6 Such approaches, however, are not necessarily
optimal for natural textures.

We instead propose to use an approach that employs
multiscale decomposition and filtering of both a texture
sample and a realization of white noise image for each
synthesis. The utilization of multiple realizations of white
noise images allows photorealistic generation of ensembles
of statistical textures. Textures such as marble, grass, and
sand have been synthesized,7,8 and we have extended the
method to include synthesis of medical textures.9

Texture synthesis may indeed play an important role in
the assessment of image quality in medical imaging, where
quality is defined in relation to medical tasks efficacy.10 To
assess the ability to detect lesions in various types of medi-
cal images~e.g., liver ultrasound, mammogram!, a large
ensemble of statistically equivalent images is required.
These images may serve as background images into which
one may or may not insert objects of interest.11–15 For ex-
ample, in optimizing or assessing a mammography imaging
system to detect cancerous lesions, a large number of sta-
tistically equivalent mammography backgrounds, half with
inserted lesions, half without, can be generated.16 The en-
semble of images can be created using texture synthesis as
an alternative to establishing a large pool of certified ‘‘nor-
mal’’ mammograms.

An approach to mammography texture synthesis is
shown in Fig. 1 where some underlying small-scale texture
is extracted from the larger scale. Two realizations of the
synthesized small-scale texture are shown. The larger scale
may be synthesized using, for example, lumpy back-
grounds.11 By recombining the synthetic structures, syn-

*Current address: Dept. of Medical Physics and Imaging, Cedars-Sinai Medical Cen-
ter, 8700 Beverly Blvd., Davis 6065, Los Angeles, CA 90048.

Paper 98048 received Apr. 15, 1998; revised manuscript received May 11, 1999 and
Oct. 29, 1999; accepted for publication Nov. 3, 1999.
1017-9909/2000/$15.00 © 2000 SPIE and IS&T.

Journal of Electronic Imaging 9(1), 39–45 (January 2000).

Journal of Electronic Imaging / January 2000 / Vol. 9(1) / 39
Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 26 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

thetic mammograms may be obtained. Naturally, the need
for large ensembles of statistically equivalent images for
image quality assessment may apply equally well to do-
mains of image science other than medical imaging.

The method of texture synthesis, that we employ to
make, for example, the mammography texture samples
shown in Fig. 1, comprises a technique known as histogram
matching between two images recursively. Histogram
matching, sometimes referred to as histogram specification,
is an image processing technique, specifically a point op-
eration, which modifies a candidate image so that its histo-
gram matches that of a model image.17 While histogram
matching is not widely employed in image processing, it is
a generalization of histogram equalization, an image pro-
cessing technique commonly employed to enhance low-
contrast images.18–20 The synthesis algorithm will be fur-
ther detailed in Sec. 7.1. Based on applications that require
either the generation of on-the-fly synthetic textures~i.e.,
computer graphics! or large ensemble of synthetic textures
~i.e., image quality assessment in image science! high-
speed computation is necessary for all procedures of the
texture synthesis algorithm, including histogram matching.
A further important point for the motivation of a faster
histogram-matching algorithm is that we shall encounter
multiple histogram matching steps in the synthesis of a
single realization of a texture as a consequence of the
multiple-scale and multiple-orientation decomposition re-
quired by the texture synthesis algorithm. The histogram-
matching algorithm thus needs to be efficient for small im-
ages~e.g., 16316 pixels!, as well as large ones~e.g., 256
3256 pixels!.

A basic question that thus motivated this research is how
to speed up the texture synthesis algorithm. For equally fast
algorithms, we shall also value the simplicity of the algo-
rithm. The investigation of how various components of the
texture synthesis algorithm can be optimized for increased
computational speed will be reported elsewhere. This paper
reports on establishing fast, and, if possible, simple,
histogram-matching algorithms. In this paper, two algo-

rithms are presented. Within the context of texture synthe-
sis, the overall computational-speed performance and sim-
plicity of the algorithms are also assessed.

2 Approaches to Histogram Matching

The most common approach to matching the histogram of
two images starts by computing their gray level histograms
and their CDFs. Matching the two CDFs is then conducted
as summarized in Sec. 3. We refer to this technique as the
CDF-matching approach.17,21–24It is to our knowledge the
only algorithm of histogram matching given in the litera-
ture. Based on this basic algorithm, an optimal CDF-
matching algorithm, referred to as the OCM algorithm, is
proposed. The algorithm is optimal in the sense that, among
possible implementations of CDF-matching, it minimizes
computational time by employing not only look-up tables
~LUTs! for performing histogram matching, but impor-
tantly, the property that the CDF is a monotonically nonde-
creasing function. Once established, this improvement
seems a simple idea. However when not accounted for, it
leads to suboptimal computational times and higher com-
plexity.

We shall also present an alternative to the CDF-
matching approach referred to as the sort-matching algo-
rithm. The benefits of this approach are its simplicity, lower
overhead than CDF matching, and high speed. Its simplic-
ity lies in the fact that it does not employ either histogram
or cumulative distribution computations. Rather, the ap-
proach is based on the matching of two sorted arrays, thus
its name. A theoretical time analysis shows, however, that
the sort-matching algorithm is more complex than the
OCM algorithm. This implies that as the images get larger,
the time complexity overwhelms the benefits of lower over-
head. For images larger than 64364 pixels, OCM is effec-
tively faster. However, for the application of texture syn-
thesis demonstrated in Sec. 7, which involves images of
various sizes due to the multiple-scale decomposition from
2563256 to 16316 pixels images, it will be shown that the
sort-matching algorithm is still the fastest algorithm. An
additional important feature of the algorithm is the exact
matching of the histograms obtained as discussed in Sec.
7.2. The sort-matching algorithm described assumes that
the two images have equal size. A strategy to apply the
algorithm to images of different sizes is discussed in Sec.
7.2 as well.

3 Histogram Matching with the CDF-Matching
Algorithm

Given a candidate image B, whose histogram is to be
matched to that of a model image A, the CDF-matching
algorithm proceeds in four steps:23 1. The normalized his-
tograms H2A and H2B of images A and B, respectively,
are computed by dividing the histogram values by the total
number of pixels in the image. 2. The CDFs, CDF2A and
CDF2B of images A and B, respectively, are then formed
from the normalized histograms. Each CDF then operates
as a LUT, where the indices of the LUT are the gray level
values~0–255!, and the content of the LUT at each index is
the value of the CDF. 3. For each pixel in image B of
associated gray leveli, the corresponding value of CDF2B
corresponding to gray leveli is determined via the LUT.

Fig. 1 In the top row, (a) shows a 2563256 pixel image of a sample
mammography tissue; the same image blurred with a Gaussian of s
6 pixels is shown in (b). The underlying mammography texture
shown in (c) is obtained by subtracting image (b) from image (a). In
the bottom row, a realization of a white noise image is shown in (d);
and two examples of synthesis of the underlying mammography tex-
ture shown in (c) are displayed in (e) and (f), respectively.

Rolland et al.

40 / Journal of Electronic Imaging / January 2000 / Vol. 9(1)
Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 26 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

The corresponding gray level valuej in image A such that
(CDF2A) j equal (CDF2B!i must then be found. 4. The
final step is to substitute gray levelj for gray level i in
image B.

The specific implementation of the CDF-matching algo-
rithm will impact the computational speed. We shall esti-
mate the minimum number of operations that are required
to perform CDF matching under the assumption that all
computations are executed on one processor. We shall also
assume a bin size for histogram computation of one, where
the gray levels of the image are binned into 256 different
levels spanning 0–255 in increments of one. Any smaller
binning of the gray level values would require a larger
number of operations for CDF computation. We shall useK
to denote the number of bins used in histogram computa-
tion andN to denote the number of pixels in the image. A
time analysis of this algorithm breaks the steps into several
parts: N operations per image to compute the histogram;
K21 operations to make the CDFs; on averageK/2 opera-
tions to find the CDF2A value that is closest to that of the
CDF2B value; andN operations to update the gray level
values of the image. TheK/2 matching operation is done
for each of theN update operations. In summary, the total
time analysis yields anO(N1K1KN) or O(KN) algo-
rithm.

4 The Optimal CDF-matching Algorithm

To improve the speed of performing CDF matching, a LUT
between the two functions to be matched can be built. The
two functions must first be set up in two arrays with CDFs.
A LUT is then formed based on the target and the source
arrays by starting with the first target value and then search-
ing the source array for the nearest value to the target value.
This search can be performed in a monotonically nonde-
creasing manner because any new matching value will nec-
essarily be greater than or equal to the previously acquired
matching value.
The C code is essentially two lines in a loop:
void OCM~float target@#, float source@#, int AOUT@#!

$
int i, cur_ix50;
for ~i50;i,256;i11!/** Get the value of target@i#** /

$
/** Find the source value equal to or
** greater than the current target value** /

while ~source@cur_ix#,target@i#!
cur_ix11;
/** Find out if the current or previous source
** value is closer to the current target value** /

if ~source@cur_ix#2 target@ i # !, ~ target@ i #2source
@cur_ix21#!

AOUT@i#5cur_ix;
else

AOUT@i#5cur_ix21;
%

%

As previously established, it takesN1K operations for
histogram and CDF computations. Based on the linear
search,K* K operations are needed to build the table.N
operations are required to update image B. Thus, the total

time analysis yields anO(N1K1KK1N) or O(N
1KK) algorithm. If a binary search instead of a linear
search is employed to build up the table, building the LUT
takes K log K operations instead. This yields anO(N
1K log K) algorithm. Finally, when accounting for the
fact that the two CDF functions are monotonically nonde-
creasing, the LUT can be constructed in onlyK operations.
The algorithm performance thus improves fromO(N
1K log K) to O(N1K).

5 Histogram Matching with the Sort-matching
Algorithm

The sort-matching algorithm utilizes sorting to implement
an exact histogram matching rather than creating histo-
grams as was done in the CDF-matching algorithm. By
‘‘exact histogram matching’’ we mean that upon comple-
tion of the algorithm, the number of pixels of a particular
gray level is the same for both images. The assignment is
such that the lowest gray level pixel of the candidate image
is assigned the value of the lowest gray-level pixel of the
model image. The next-to-lowest gray level pixel of the
candidate image is assigned the value of the next-to-lowest
gray level pixel of the model image. This process is re-
peated until all the pixel values have been assigned.

Let us again presume that B represents a candidate im-
age we wish to match to a model image A of the same size.
Rather than the two usual indexing of the images, we will
assume that the pixel values are arranged into one-
dimensional arrays. Bold characters are employed to denote
vector quantities. This lexicographical indexing of the im-
ages, which is generally trivial to implement in most com-
puting languages~e.g., C, Fortran!, allows multidimen-
sional arrays to be reduced to one dimension in procedures
and functions. In higher-level languages such as IDL, redi-
mensioning the array is unnecessary since the language al-
lows a multidimensional array element to be accessed by its
one-dimensional lexicographical index. The size of the lin-
ear arrays is the total number of pixels in each image. The
algorithm is implemented in two simple steps:

1. The pixel values of the two images are sorted in as-
cending order. The lexicographic indices corresponding to
the sorted gray levels are denotedIND2A and IND2B for
imagesA andB, respectively. The first element of the list
IND2A contains the index of the lowest gray level value of
A. The second element ofIND2A contains the index of the
next-to-lowest gray level value ofA, etc. The same applies
to IND2B. Any of the standard sort routines can be used
for this step. We used the generally accepted fastest sort
algorithm, QuickSort. The average time complexity of
QuickSort isO(N log2 N).

2. The candidate imageB is then assigned the gray level
values of the model imageA according to the sorted gray
level values. We can define this step by the following equa-
tion:

B„IND2B)5A„IND2A). ~1!

This sequence of sorting and substitution yields an imageB
whose histogram is matched with that ofA. An illustration
of the sort-matching algorithm can be found in Rolland
et al.25

Fast algorithms for histogram matching . . .

Journal of Electronic Imaging / January 2000 / Vol. 9(1) / 41
Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 26 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

6 Comparison of Computational Speeds of the
Various Approaches

We have estimated the minimum number of operations for
the conventional CDF matching, the OCM, and the sort-
matching algorithms to beO(NK), O(N1K), and
O(N log2 N), respectively, whereN is the number of pix-
els andK is the number of gray level values. Therefore, the
OCM and the sort-matching algorithms outperform the
conventional CDF-matching algorithm by a large margin.
The OCM algorithm outperforms the sort-matching algo-
rithm whereN is much larger thanK. If K was sufficiently
large to wash out the effect ofN, which would be the case
for true-color values (K5224), then the sort-matching al-
gorithm would be the fastest.

7 Application to Texture Synthesis

7.1 Texture Synthesis Algorithm

The algorithm for texture synthesis we have developed is
based on a multiple-scale and multiple-orientation decom-
position of a sample from a model texture image and the
same decomposition of a realization of a uniformly distrib-
uted white noise image.7,9 The decomposition is depicted in
Fig. 2. The decomposition may use, for example, the steer-
able pyramid transform.26–29The histograms of the decom-
posed white noise images existing at multiple scales are
then matched with that of the sample texture. After decom-
position and histogram matching at all scales and orienta-
tions, the noise subband images are recombined to yield a
synthetic image. The algorithm was implemented in the
IDL language and is further summarized in Rolland and
Strickland.9

7.2 Results and Discussion

Synthesized textures using either the OCM, the conven-
tional CDF matching, or the sort-matching algorithms are
shown in Fig. 3 for two different model texture images,

respectively. Two realizations of image synthesis were gen-
erated for each texture model using two different realiza-
tions of the input noise image.

Given one realization of a noise image, the synthesized
images are perceptually identical using the three methods.
Their histograms, however, are slightly different because
only the sort-matching algorithm performs exact histogram
matching as shown. The CDF-matching algorithm performs
only a relatively close match. A comparison of perfor-
mance based on the same noise realizations for each
method allows assessment of potential artifacts~e.g., ran-
dom scrambling of pixel values! that could have been in-
troduced by an approach~e.g., the sort-matching algo-
rithm!.

The computational speeds of the algorithms are summa-
rized in Table 1. The timing data were collected on a Sun-
Sparc4 workstation runningSOLARIS 2.5.1and using the IDL
programming language. For each synthetic image, a com-
putational time was recorded for the histogram matching
procedure at each scale of the decomposition and for a
single iteration of the overall processing of the synthesis.
Seven iterations were typically conducted. The texture syn-
thesis employing the sort-matching and OCM algorithms
are, respectively, about 10 and 60 times faster than when
employing the conventional CDF-matching algorithm for a
2563256 image. Averaged over the two computational tri-
als, the sort-matching algorithm is the fastest of the three.

The OCM algorithm comes next and quite close. The
OCM also does not degrade as rapidly with image size past
1283128 pixel images. It can be noted that for texture
synthesis, algorithms that differ in the histogram-matching
algorithm employed, the overall computational time re-
quired for histogram matching is small compared to the
decomposition and filtering contributions. We are currently
investigating other decomposition schemes that will further
contribute to a higher computational speed. However, a
faster histogram matching procedure is a first step toward
faster synthesis of images using subband decomposition
and histogram matching.

Fig. 2 Illustration of one scale level of the steerable pyramid transform used in the texture synthesis
algorithm.

Rolland et al.

42 / Journal of Electronic Imaging / January 2000 / Vol. 9(1)
Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 26 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Fig. 3 Results of texture synthesis by two methods of histogram matching for two textures. The
histograms of each texture and the syntheses are also shown.

Fast algorithms for histogram matching . . .

Journal of Electronic Imaging / January 2000 / Vol. 9(1) / 43
Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 26 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

It is interesting to note that some expected, but uncom-
mon, gray level mappings occurred with the sort-matching
algorithm. Let us consider the 232 left-corner subimages
AL andBL of two images A and B, respectively, given by

AL5F1 1

2 2G
and

BL5F5 5

5 5G .
As a result of the sort-matching algorithm, four identical
gray levels given byBL can be mapped to two different
gray levels. It is indeed the nature of any exact histogram-
matching algorithm to yield such mappings. If this mapping
were not preferred, searching for elements of the sorted
arrays with identical pixel values and resetting their gray
levels to identical gray level values would modify the map-
ping. Such a remapping would lead to nonexact histogram
matching and it would cost computational time. In the ap-
plication of texture synthesis presented here, such mapping
as a result of sort matching seems acceptable as shown by
the perceptually similar syntheses when we applied both
methods to a single realization of the noise. Ultimately, an
analysis of the statistical properties may be required for
quantitative analysis.30

Finally, the sort-matching algorithm assumes that the
two images being matched have the same size, which can
be satisfied in the subband-decomposition-based texture
synthesis application. In the case of other applications or
other texture synthesis frameworks, where the images have
dissimilar sizes, the smaller image could be, for example,
interpolated to equal the other image in size before the
sort-matching algorithm is applied.

8 Conclusion

Texture synthesis based on the steerable pyramid transform
requires multiple histogram-matching operations of images
that have been decomposed at multiple scales and orienta-
tions. We have shown that the sort-matching and the OCM
histogram-matching algorithms provide high computational

speed for texture synthesis, compared to the conventional
approach. In some applications, the sort-matching algo-
rithm may be preferred because it provides exact histogram
matching. Results of texture synthesis that use either of the
methods presented here show no subjective perceptual dif-
ferences. The sort-matching algorithm is attractive because
of its simplicity and speed, however, as the size of the
image increases, the OCM may be preferred for optimal
computational speed.

Acknowledgments

This work was supported by the University of Central
Florida Small Grant Program, the Florida Hospital Gala
Endowed Program, and the Florida I4-Corridor. We thank
Liyun Yu for his early contribution to this work concerning
the implementation of the texture synthesis algorithm.

References
1. G. C. Cross and A. K. Jain, ‘‘Markov random field texture models,’’

IEEE Trans. Pattern. Anal. Mach. Intell.5, 25–39~1983!.
2. R. Chellappa and R. L. Kashyap, ‘‘Texture synthesis using 2-D non-

causal autoregressive models,’’IEEE Trans. Acoust., Speech, Signal
Process.33, 194–203~1985!.

3. J. P. Lewis, ‘‘Algorithms for solid noise synthesis,’’Comput. Graph.
23, 263–270~1989!.

4. A. Witkin and M. Kass, ‘‘Reaction-diffusion textures,’’Comput.
Graph.25, 299–308~1991!.

5. P. S. Heckbert, ‘‘Survey of texture mapping,’’IEEE Comput. Graph-
ics Appl.6, 56–67~1986!.

6. G. Turk, ‘‘Generating textures on arbitrary surfaces using reaction
diffusion,’’ Comput. Graph.25, 289–298~1991!.

7. D. J. Heeger and J. R. Bergen, ‘‘Pyramid-based texture analysis/
synthesis,’’ inProc. Computer Graphics, pp. 229–238, Los Angles,
CA, August 6–11~1995!.

8. J. P. Rolland, A. Goon, and L. Yu, ‘‘Synthesis of textured complex
backgrounds,’’Opt. Eng.37~7!, 2055–2063~1998!.

9. J. P. Rolland and R. Strickland, ‘‘An approach to the synthesis of
biological tissue,’’Opt. Express1~13!, 414:423~1997!.

10. J. P. Rolland, ‘‘Synthesizing anatomical images for image understand-
ing and quality assessment,’’Handbook of Medical Imaging,
Progress in Medical Physics and Psychophysics, Beutel, Van Metter,
and Kundel, Eds., Vol. II, Chapter 13, SPIE, Bellingham, WA~to be
published!.

11. K. J. Myers, J. P. Rolland, H. H. Barrett, and R. F. Wagner, ‘‘Aper-
ture optimization for emission imaging: effect of a spatially varying
backgrounds,’’J. Opt. Soc. Am. A7, 1279–1293~1990!.

12. J. P. Rolland and H. H. Barrett, ‘‘Effect of random background inho-
mogeneity on observer detection performance,’’J. Opt. Soc. Am. A9,
649–658~1992!.

13. A. E. Burgess, ‘‘Statistically-defined backgrounds: performance of a
modified nonprewhitening observer model,’’J. Opt. Soc. Am. A11,
1237–1242~1994!.

14. P. F. Judy, ‘‘Detection of clusters of simulated calcifications in lumpy

Table 1 Timing data in s. The computational speeds for the OCM, the conventional CDF matching,
and the sort-matching algorithms are reported for 256 gray scale images. The scale refers to the size
of the decomposed subimages for texture synthesis. Synthesis 1 and 2 refer to the two different
realizations of white noise as a starting point for the synthesis. Overall refers to an iteration of the
synthesis algorithm.

Options

Scale

OCM algorithm
(s)

CDF-matching
algorithm

Sort-matching algorithm
(s)

Synthesis
1

Synthesis
2

Synthesis
1

Synthesis
2

Synthesis
1

Synthesis
2

2563256 1.49 1.53 91.79 107.25 10.68 10.92

1283128 0.40 0.40 23.12 23.55 0.43 0.44

64364 0.129 0.126 4.96 6.27 0.09 0.093

32332 0.058 0.060 1.28 1.29 0.02 0.021

Overall 227.46 305.98 1402.73 1561.54 228.80 237.99

Rolland et al.

44 / Journal of Electronic Imaging / January 2000 / Vol. 9(1)
Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 26 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

noise backgrounds,’’Proc. SPIE2712, 39–46~1996!.
15. R. N. Strickland, ‘‘Wavelet transforms for detecting microcalcifica-

tions in mammograms,’’IEEE Trans. Med. Imaging15~2!, 218–229
~1996!.

16. H. H. Barrett, J. Yao, J. P. Rolland, and K. J. Myers, ‘‘Model observ-
ers for assessment of image quality,’’Proc. Natl. Acad. Sci. USA90,
9758–9765~1993!.

17. K. R. Castleman,Digital Image Processing, Prentice Hall, Upper
Saddle River, NJ~1996!.

18. E. H. Hall, ‘‘Almost uniform distributions for computer image en-
hancement,’’IEEE Trans. Comput.C-23~2!, 207–208~1974!.

19. S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz,
T. Greer, B. T. H. Romeny, J. Zimmerman, and K. Zuiderveld,
‘‘Adaptive histogram equalization and its variations,’’Comput. Vis.
Graph. Image Process.39, 355–368~1987!.

20. R. B. Paranjape, W. M. Morrow, and R. M. Rangayyan, ‘‘Adaptive-
neighborhood histogram equalization for image enhancement,’’
Graphical Models Image Proc.54~3!, 259–267~1992!.

21. W. K. Pratt,Digital Image Processing, Wiley, New York ~1978!.
22. M. Wegener, ‘‘Destriping multiple sensor imagery by improved his-

togram matching,’’Int. J. Remote Sens.11~5!, 859–875~1990!.

23. R. C. Gonzalez and R. C. Woods,Digital Image Processing, Addison-
Wesley, Reading, MA~1992!.

24. A. R. Weeks,Fundamentals of Electronic Image Processing, SPIE
Optical Engineering, Bellingham, WA~1996!.

25. J. P. Rolland, V. Vo, L. Yu, B. Bloss, and C. K. Abbey, ‘‘An optimal
histogram matching algorithm,’’ Technical Report TR99-001, May,
University of Central Florida~1999!.

26. E. P. Simoncelli and E. H. Adelson, ‘‘Subband transforms,’’Subband
Image Coding, J. W. Woods, Ed., Kluwer Academic, Norwell, MA
~1990!.

27. E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger,
‘‘Shiftable multi-scale transforms,’’IEEE Trans. Inf. Theory38, 587–
607 ~1992!.

28. P. Perona, ‘‘Deformable kernels for early vision,’’IEEE Trans. Pat-
tern. Anal. Mach. Intell.7~5!, 488–489~1995!.

29. J. W. Woods,Subband Image Coding, pp. 143–192, Kluwer Aca-
demic, Norwell, MA ~1991!.

30. A. A. Goon and J. P. Rolland, ‘‘Texture classification based on com-
parison of second-order statistics: 2P-PDF estimation and distance
measure,’’J. Opt. Soc. Am. A16~7!, 1566–1574~1999!.

Fast algorithms for histogram matching . . .

Journal of Electronic Imaging / January 2000 / Vol. 9(1) / 45
Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 26 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

	Fast algorithms for histogram matching: Application to texture synthesis
	Recommended Citation

	tmp.1569509608.pdf.oZIXV

