23 research outputs found

    Identification of protein carbonyls in serum of the fetal and neonatal pig

    Get PDF
    Oxidation of serum proteins leads to non-reversible carbonyl formation which alters their function and is associated with stress-related disease processes. The primary objective of this study was to quantify and identify oxidized serum proteins in fetal and newborn piglets. Protein carbonyls were converted to hydrazones with dinitrophenyl hydrazine and quantified spectrophotometrically. For identification, serum protein carbonyls were derivatized with biotin hydrazide, separated by 2D PAGE and stained with FITCavidin. Biotin-labeled proteins were excised from gels and identified by mass spectrometry. At birth, carbonyls were determined to be ∼600 pmole/mg serum protein. Fetuses at 50 and 100 days of gestation had similar levels of protein carbonyls as newborns. Carbonyl levels were also similar for control and runt (birth) piglets between 1 and 21 days of age; however, distribution of many proteins varied by age and was also influenced by birth weight. Major oxidized proteins identified in fetal (f) and newborn (n) pigs included; albumin (f, n), transferrin (f, n), fetuin-A (f, n) alpha fetoprotein (f, n), plasminogen (f, n), fetuin-B (f), alpha-1-antitrypsin (f, n) alpha-1-acid glycoprotein (f) and immunoglobulins (n). While abundance and distribution of oxidized proteins changed over time, these changes appear to primarily reflect relative amounts of those proteins in serum

    APES Beamforming Applied to Medical Ultrasound Imaging

    Get PDF
    As of today, sonar imaging is the most effective means of documenting the subsea environment. Existing sonar imaging systems generally rely on conventional beamforming methods to form the image. While conventional beamformers are robust and simple, they leave many of the challenges of sonar imaging unresolved. Sonar images are often degraded by noise, and the image resolution as well as the range at which useful images can be obtained is limited. This thesis addresses the use of adaptive beamforming and imaging methods applied to active sonar. The goal of an adaptive beamformer in this context is to improve the quality of the sonar image by allowing the beamformer to adapt to the situation, recognizing sources of noise and interference and suppressing them before they have the chance to contaminate the image. The desired result is an image containing more useful and correct information, less noise, and improved image resolution. Focus has been on investigating how different adaptive methods can be implemented in a practical setting, and analyzing the performance of each method. Key challenges that are addressed include coherent signals, arbitrary array geometries, computational load, and robustness. Two of the most common adaptive beamforming methods, the minimum variance distortionless response (MVDR) and the amplitude and phase estimation (APES) beamformers, are considered, as well as a low complexity variant of the adaptive MVDR beamformer. Adaptive imaging methods based on aperture coherence represent a promising class of adaptive methods, and are also considered. We conclude that in many cases, improved image quality is obtained by using adaptive beamforming methods

    Epigenetics and Malaria Susceptibility/Protection: A Missing Piece of the Puzzle

    Get PDF
    A better understanding of stable changes in regulation of gene expression that result from epigenetic events is of great relevance in the development of strategies to prevent and treat infectious diseases. Histone modification and DNA methylation are key epigenetic mechanisms that can be regarded as marks, which ensure an accurate transmission of the chromatin states and gene expression profiles over generations of cells. There is an increasing list of these modifications, and the complexity of their action is just beginning to be understood. It is clear that the epigenetic landscape plays a fundamental role in most biological processes that involve the manipulation and expression of DNA. Although the molecular mechanism of gene regulation is relatively well understood, the hierarchical order of events and dependencies that lead to protection against infection remain largely unknown. In this review, we propose that host epigenetics is an essential, though relatively under studied, factor in the protection or susceptibility to malaria

    The FAIR Guiding Principles for scientific data management and stewardship

    Get PDF
    There is an urgent need to improve the infrastructure supporting the reuse of scholarly data. A diverse set of stakeholders—representing academia, industry, funding agencies, and scholarly publishers—have come together to design and jointly endorse a concise and measureable set of principles that we refer to as the FAIR Data Principles. The intent is that these may act as a guideline for those wishing to enhance the reusability of their data holdings. Distinct from peer initiatives that focus on the human scholar, the FAIR Principles put specific emphasis on enhancing the ability of machines to automatically find and use the data, in addition to supporting its reuse by individuals. This Comment is the first formal publication of the FAIR Principles, and includes the rationale behind them, and some exemplar implementations in the community

    Immune mechanisms in malaria: new insights in vaccine development.

    No full text
    Early data emerging from the first phase 3 trial of a malaria vaccine are raising hopes that a licensed vaccine will soon be available for use in endemic countries, but given the relatively low efficacy of the vaccine, this needs to be seen as a major step forward on the road to a malaria vaccine rather than as arrival at the final destination. The focus for vaccine developers now moves to the next generation of malaria vaccines, but it is not yet clear what characteristics these new vaccines should have or how they can be evaluated. Here we briefly review the epidemiological and immunological requirements for malaria vaccines and the recent history of malaria vaccine development and then put forward a manifesto for future research in this area. We argue that rational design of more effective malaria vaccines will be accelerated by a better understanding of the immune effector mechanisms involved in parasite regulation, control and elimination

    Multi-Platform Next-Generation Sequencing of the Domestic Turkey (Meleagris gallopavo): Genome Assembly and Analysis

    Get PDF
    The combined application of next-generation sequencing platforms has provided an economical approach to unlocking the potential of the turkey genome

    ACT4storage - Acoustic and Chemical Technologies for environmental GCS monitoring. D4 - Recommended guidelines report

    Get PDF
    Carbon capture and storage (CCS) is a promising tool for accelerating decarbonization and reaching international climate goals. The process involves capturing CO2 from energy-intensive industries such as waste-to-energy plants, fertilizer production, and fossil fuel combustion, and injecting it into suitable geological formations for safe and permanent storage instead of releasing it into the atmosphere. A dedicated monitoring plan is required to verify that the CO2 is safely stored over time and to detect and quantify leakage if it should occur. For offshore carbon storage, the primary monitoring is based on seismic methods and in-well monitoring, complemented by marine monitoring targeting the seabed and the water column above the storage reservoir. This report is intended to provide support for parties involved in the design of a marine monitoring program for offshore CCS sites. ...publishedVersio
    corecore