5,504 research outputs found

    Interviewer Effects on Nonresponse

    Get PDF
    In face-to-face surveys interviewers play a crucial role in making contact with and gaining cooperation from sample units. While some analyses investigate the influence of interviewers on nonresponse, they are typically restricted to single-country studies. However, interviewer training, contacting and cooperation strategies as well as survey climates may differ across countries. Combining call-record data from the European Social Survey (ESS) with data from a detailed interviewer questionnaire on attitudes and doorstep behavior we find systematic country differences in nonresponse processes, which can in part be explained by differences in interviewer characteristics, such as contacting strategies and avowed doorstep behavior.

    Strain rate effect on the mechanical behaviour of a textile reinforced cement composite

    Get PDF
    The static tensile behaviour of Textile Reinforced Cement Composites is known and can be modeled adequately. However, using these static material properties under dynamic loadings such as impact and seismic loadings, can cause over- or underestimation of the material due to effects of strain rate. This work focuses on the strain rate dependency of a specific textile reinforced cement composite under tensile loadings at strain rates equivalent to quasi static applications towards low velocity impacts. It was found that the main damage mechanisms of this material stay the same. However cracking of the cement matrix is delayed to higher stress levels

    A functional central limit theorem for a Markov-modulated infinite-server queue

    Get PDF
    The production of molecules in a chemical reaction network is modelled as a Poisson process with a Markov-modulated arrival rate and an exponential decay rate. We analyze the distributional properties of MM, the number of molecules, under specific time-scaling; the background process is sped up by NαN^{\alpha}, the arrival rates are scaled by NN, for NN large. A functional central limit theorem is derived for MM, which after centering and scaling, converges to an Ornstein-Uhlenbeck process. A dichotomy depending on α\alpha is observed. For α1\alpha\leq1 the parameters of the limiting process contain the deviation matrix associated with the background process.Comment: 4 figure

    On the Nature of MeV-blazars

    Full text link
    Broad-band spectra of the FSRQ (flat-spectrum-radio quasars) detected in the high energy gamma-ray band imply that there may be two types of such objects: those with steep gamma-ray spectra, hereafter called MeV-blazars, and those with flat gamma-ray spectra, GeV-blazars. We demonstrate that this difference can be explained in the context of the ERC (external-radiation-Compton) model using the same electron injection function. A satisfactory unification is reachable, provided that: (a) spectra of GeV-blazars are produced by internal shocks formed at the distances where cooling of relativistic electrons in a jet is dominated by Comptonization of broad emission lines, whereas spectra of MeV-blazars are produced at the distances where cooling of relativistic electrons is dominated by Comptonization of near-IR radiation from hot dust; (b) electrons are accelerated via a two step process and their injection function takes the form of a double power-law, with the break corresponding to the threshold energy for the diffusive shock acceleration. Direct predictions of our model are that, on average, variability time scales of the MeV-blazars should be longer than variability time scales of the GeV-blazars, and that both types of the blazar phenomenon can appear in the same object.Comment: Accepted for publication in the Astrophysical Journa

    Exact solution of the Zeeman effect in single-electron systems

    Full text link
    Contrary to popular belief, the Zeeman effect can be treated exactly in single-electron systems, for arbitrary magnetic field strengths, as long as the term quadratic in the magnetic field can be ignored. These formulas were actually derived already around 1927 by Darwin, using the classical picture of angular momentum, and presented in their proper quantum-mechanical form in 1933 by Bethe, although without any proof. The expressions have since been more or less lost from the literature; instead, the conventional treatment nowadays is to present only the approximations for weak and strong fields, respectively. However, in fusion research and other plasma physics applications, the magnetic fields applied to control the shape and position of the plasma span the entire region from weak to strong fields, and there is a need for a unified treatment. In this paper we present the detailed quantum-mechanical derivation of the exact eigenenergies and eigenstates of hydrogen-like atoms and ions in a static magnetic field. Notably, these formulas are not much more complicated than the better-known approximations. Moreover, the derivation allows the value of the electron spin gyromagnetic ratio gsg_s to be different from 2. For completeness, we then review the details of dipole transitions between two hydrogenic levels, and calculate the corresponding Zeeman spectrum. The various approximations made in the derivation are also discussed in details.Comment: 18 pages, 4 figures. Submitted to Physica Script

    Ultimate performance of polymer:fullerene bulk heterojunction tandem solar cells

    Get PDF
    We present the model calculations to explore the potential of polymer:fullerene tandem solar cells. As an approach we use a combined optical and electrical device model, where the absorption profiles are used as starting point for the numerical current-voltage calculations. With this model a maximum power efficiency of 11.7% for single cells has been achieved as a reference. For tandem structures with a ZnO/poly(3,4-ethylenedioxythiophene)/ poly(styrenesulphonic acid) middle electrode an ultimate efficiency of 14.1% has been calculated. In the optimum configuration the subcell with the narrowest band gap is placed closest to the incoming light. Consequently, tandem structures are expected to enhance the performance of optimized single cells by about 20%. © 2011 American Institute of Physics

    Spaceborne radar observations: A guide for Magellan radar-image analysis

    Get PDF
    Geologic analyses of spaceborne radar images of Earth are reviewed and summarized with respect to detecting, mapping, and interpreting impact craters, volcanic landforms, eolian and subsurface features, and tectonic landforms. Interpretations are illustrated mostly with Seasat synthetic aperture radar and shuttle-imaging-radar images. Analogies are drawn for the potential interpretation of radar images of Venus, with emphasis on the effects of variation in Magellan look angle with Venusian latitude. In each landform category, differences in feature perception and interpretive capability are related to variations in imaging geometry, spatial resolution, and wavelength of the imaging radar systems. Impact craters and other radially symmetrical features may show apparent bilateral symmetry parallel to the illumination vector at low look angles. The styles of eruption and the emplacement of major and minor volcanic constructs can be interpreted from morphological features observed in images. Radar responses that are governed by small-scale surface roughness may serve to distinguish flow types, but do not provide unambiguous information. Imaging of sand dunes is rigorously constrained by specific angular relations between the illumination vector and the orientation and angle of repose of the dune faces, but is independent of radar wavelength. With a single look angle, conditions that enable shallow subsurface imaging to occur do not provide the information necessary to determine whether the radar has recorded surface or subsurface features. The topographic linearity of many tectonic landforms is enhanced on images at regional and local scales, but the detection of structural detail is a strong function of illumination direction. Nontopographic tectonic lineaments may appear in response to contrasts in small-surface roughness or dielectric constant. The breakpoint for rough surfaces will vary by about 25 percent through the Magellan viewing geometries from low to high Venusian latitudes. Examples of anomalies and system artifacts that can affect image interpretation are described

    The Diffuse Gamma-Ray Background from Supernovae

    Get PDF
    The Cosmic Gamma-ray Background (CGB) in the MeV region is believed to be due to photons from radioactivity produced in SNe throughout the history of galaxies in the universe. In particular, gamma-ray line emission from the decay chain 56Ni-> 56Co->56Fe provides the dominant photon source. Although iron synthesis occurs in all types of SNe, the contribution to the CGB is dominated by SNIa events due to their higher photon escape probabilities. Estimates of the star formation history in the universe suggest a rapid increase by a factor \~ 10 from the present to a redshift z_p ~ 1.5, beyond which it either remains constant or decreases slowly. We integrate the observed star formation history to determine the CGB from the corresponding SN rate history. In addition to gamma-rays from short-lived radioactivity in SNIa and SNII/Ibc we also calculate the minor contributions from long-lived radioactivities (26Al, 44Ti, 60Co, and electron-positron pair annihilation). Although progenitor evolution for SNIa is not yet fully understood, various arguments suggest delays of order 1-2 Gy between star formation and the production of SNIa's. The effect of this delay on the CGB is discussed. We emphasize the value of gamma-ray observations of the CGB in the MeV range as an independent tool for studies of the cosmic star formation history. If the delay between star formation and SNIa activity exceeds 1 Gy substantially, and/or the peak of the cosmic star formation rate occurs at a redshift much larger than unity, the gamma-ray production of SNIa would be insufficient to explain the observed CGB. Alternatively, the cosmic star formation rate would have to be higher (by a factor 2-3) than commonly assumed, which is in accord with several upward revisions reported in the recent literature.Comment: Minor changes, 26 pages, 9 figures, Accepted by Ap

    Maximal Sharing in the Lambda Calculus with letrec

    Full text link
    Increasing sharing in programs is desirable to compactify the code, and to avoid duplication of reduction work at run-time, thereby speeding up execution. We show how a maximal degree of sharing can be obtained for programs expressed as terms in the lambda calculus with letrec. We introduce a notion of `maximal compactness' for lambda-letrec-terms among all terms with the same infinite unfolding. Instead of defined purely syntactically, this notion is based on a graph semantics. lambda-letrec-terms are interpreted as first-order term graphs so that unfolding equivalence between terms is preserved and reflected through bisimilarity of the term graph interpretations. Compactness of the term graphs can then be compared via functional bisimulation. We describe practical and efficient methods for the following two problems: transforming a lambda-letrec-term into a maximally compact form; and deciding whether two lambda-letrec-terms are unfolding-equivalent. The transformation of a lambda-letrec-term LL into maximally compact form L0L_0 proceeds in three steps: (i) translate L into its term graph G=[[L]]G = [[ L ]]; (ii) compute the maximally shared form of GG as its bisimulation collapse G0G_0; (iii) read back a lambda-letrec-term L0L_0 from the term graph G0G_0 with the property [[L0]]=G0[[ L_0 ]] = G_0. This guarantees that L0L_0 and LL have the same unfolding, and that L0L_0 exhibits maximal sharing. The procedure for deciding whether two given lambda-letrec-terms L1L_1 and L2L_2 are unfolding-equivalent computes their term graph interpretations [[L1]][[ L_1 ]] and [[L2]][[ L_2 ]], and checks whether these term graphs are bisimilar. For illustration, we also provide a readily usable implementation.Comment: 18 pages, plus 19 pages appendi

    Does the Blazar Gamma-Ray Spectrum Harden with Increasing Flux? Analysis of 9 Years of EGRET Data

    Full text link
    The Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory (CGRO) discovered gamma-ray emission from more than 67 blazars during its 9 yr lifetime. We conducted an exhaustive search of the EGRET archives and selected all the blazars that were observed multiple times and were bright enough to enable a spectral analysis using standard power-law models. The sample consists of 18 flat-spectrum radio quasars(FSRQs), 6 low-frequency peaked BL Lac objects (LBLs) and 2 high-frequency peaked BL Lac objects (HBLs). We do not detect any clear pattern in the variation of spectral index with flux. Some of the blazars do not show any statistical evidence for spectral variability. The spectrum hardens with increasing flux in a few cases. There is also evidence for a flux-hardness anticorrelation at low fluxes in five blazars. The well-observed blazars (3C 279, 3C 273, PKS 0528+134, PKS 1622-297 PKS 0208-512) do not show any overall trend in the long-term spectral dependence on flux, but the sample shows a mixture of hard and soft states. We observed a previously unreported spectral hysteresis at weekly timescales in all three FSRQs for which data from flares lasting for ~(3-4) weeks were available. All three sources show a counterclockwise rotation, despite the widely different flux profiles. We analyze the observed spectral behavior in the context of various inverse Compton mechanisms believed to be responsible for emission in the EGRET energy range. Our analysis uses the EGRET skymaps that were regenerated to include the changes in performance during the mission
    corecore