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ABSTRACT: The static tensile behaviour of Textile Reinforced Cement Composites is 

known and can be modeled adequately. However, using these static material properties under 

dynamic loadings such as impact and seismic loadings, can cause over- or underestimation of 

the material due to effects of strain rate. This work focuses on the strain rate dependency of a 

specific textile reinforced cement composite under tensile loadings at strain rates equivalent to 

quasi static applications towards low velocity impacts. It was found that the main damage 

mechanisms of this material stay the same. However cracking of the cement matrix is delayed 

to higher stress levels.  

1 INTRODUCTION 

In civil engineering applications, more and more composite materials are being used 

nowadays. This trend is not only visible in aviation and automobile industries. Also in the 

design of building constructions many attempts are undertaken to replace or to partially 

replace traditional building materials (as concrete and steel) by advanced composite materials. 

Some good examples can be found in many skyscrapers, where mostly weight is of major 

importance. A lot of these constructions are subjected to impact or seismic loadings during 

their lifetime, which makes it necessary to implement dynamic behaviour into their design. 

Implementation of dynamic loadings into the design of a structure using the static material 

behaviour can lead to an underestimation of the materials’ performance and thus an 

overweighed design. On the other hand it can lead to unexpected failure of the material due to 

an overestimation of its dynamic properties. Therefore it is necessary to quantify the 

behaviour of the material under dynamic loading conditions which imply different strain 

rates. Many composite materials behave differently at different strain rates and several 

researchers have obtained results for the evolution of strength and stiffness of a specific 

composite material as a function of strain rate. These results not always correspond to each 

other due to the lack of standardized tests to obtain material properties at higher strain rates 

and to difficulties encountered during the tests. 

A promising group of materials which can (partially) replace traditional materials in building 

constructions are High Performance Fibre Reinforced Cement Composites (HPFRCC). These 

materials distinguish themselves from traditional fibre reinforced concrete by their much 

higher mechanical performance (see Fig. 3.1. in section 3). Next to a strain hardening 

behaviour under tensile loading, providing strength, a HPFRCC is characterized by a high 
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energy absorption capacity. A special group in this large group of HPFRCC, which have had 

some applications in buildings [Heg06], are textile reinforced concrete composites. Due to the 

use of textile reinforcements instead of loose fibres the fibre volume fractions increase 

significantly. These materials therefore show a very clear strain hardening behaviour leading 

to high strength. Moreover, they show high energy absorption due to different damage 

mechanisms implying non linear behaviour. This high energy absorption capacity could be 

used either to implement accidental loading, such as impact and earthquakes, into the design 

of building structures, or to design special sacrificial building components with these 

materials to protect civil buildings. In the present paper, the effect of strain rate on the 

mechanical tensile behaviour of a specific glass textile reinforced cement composite is 

investigated. The aim is to obtain insight in the material behaviour at strain rates 

corresponding to those present during low velocity impact events (mass impact). 

2 STRAIN RATE EFFECTS ON COMPOSITES 

When it comes to impact problems and dynamic behaviour, it is very useful to develop a 

sense of the range of strain rates which one can expect in such problems. A good overview of 

different strain rates depending on the performed tests is given in Fig. 2.1 [Fie04, Fer05]. 

Most servo- hydraulic machines can obtain strain rates up to 10
0
 s

-1
, which can be compared 

to rather quick static loadings. Specialized low velocity impact machines, such as a drop 

weight test or a pendulum test, can provide strain rates up to 10
2
 s

-1
. Higher strain rates are 

typically obtained by using a split Hopkinson/Kolsky bar test. These rates simulate rather fast 

impact events as a bullet impact. In this paper, results will be presented of tests within the 

static range going towards dynamic events.  

 

Fig. 2.1. Typical strain rate domains linked with testing machines. [Fie04, Fer05]. 

Many composite materials were found to be strain rate sensitive [Bar96, Fer05, Sch08, 

Kim08, Can09]. The investigations available in most of these publications deal with the strain 

rate sensitivity of polymer matrix composites with glass fibre or carbon fibre reinforcements. 

In the middle nineties Barré et al. [Bar96] discussed a large amount of literature on the strain 

rate dependency of polymer composite materials. In this review a wide range of strain rates 

was covered (from 2 x 10
-4

 s
-1

 to 2 x 10
3
 s

-1
) and in most of these efforts influences of strain 

rate on the strength and stiffness were found. However, depending on the authors there 

seemed to be some controversy in the results. This indicated that the results strongly depend 

on the components of the composite material and that there is no standard testing procedure. 

In more recent work of Fereshteh-Saniee, Majzoobi and Bahrami [Fer05] tensile tests are 

performed on glass-epoxy composites at strain rates ranging from 0.0001 to 0.11 s
-1

. They 

concluded that even at these rather low strain rates, the material was strain rate sensitive. The 
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differences were mainly situated in the strength and in a minor way the strain rate had an 

effect on the stiffness. These researchers were able to determine an analytical model to predict 

the strength at different strain rates. Schoßig et al. [Sch08] did some experimental work on 

glass fibre reinforced Polypropylene and Polybutene-1 composites. Using a high speed tensile 

test, they were able to test specimens in a range of 0.007 up to 174 s
-1

. In this study the effect 

of strain rate was also present in the tensile stress-strain curves. It was found that strain rates 

above 20 s
-1

 cause a spectacular increase in mechanical properties, while the effect at lower 

strain rates is present but less distinctly. 

One of the most interesting publications on this topic related to TRC-materials was probably 

written by Kim, El-Tawil and Naaman [Kim08]. HPFRCC specimens were tested in tension 

in this publication and this at different strain rates ranging from 0.0001 to 0.1 s
-1

. The 

investigated HPFRCC are steel fibre reinforced cement matrices. The fibres were mixed into 

the matrix in an amount of 1 or 2 vol.-%, which is rather low compared to textile reinforced 

cement composites. In these tests it was found that in some cases there is a strain rate effect 

on the cracking of the matrix and the strength. Cadoni, Meda and Plizzari [Cad09] performed 

tests on a similar FRC material, but at higher strain rates. They used a split Hopkinson bar test 

to investigate the strain rate dependency of this material at strain rates of 50 s
-1

, 100 s
-
1 and 

200 s
-1

. This study indicated that for an FRC material with steel and PVA fibre reinforcement 

the ratio between dynamic and static strength (also called Dynamic Increase Factor or DIF) 

increases with strain rate. However these materials become more brittle at higher strain rates. 

3 STUDIED MATERIAL AND STATIC BEHAVIOUR 

3.1 Material 

The textile reinforced cement composite investigated in this research is a glass textile 

reinforced Inorganic Phosphate Cement (IPC) [IPC] with non woven fabrics (Owens Corning 

M705 with a surface weight of 300 g/m
2
) as reinforcement. IPC, commercially available 

under the name Vubonite®, was developed at the Vrije Universiteit Brussel and consists of a 

liquid component based on a phosphoric acid solution containing inorganic metal oxides and 

a calcium silicate powder component. Compared to conventional TRCs, this material has the 

advantages of possessing a neutral pH after curing and being absolutely fire resistant. The 

neutral pH-value is a major advantage when it comes to compatibility with glass fibres. In a 

normal Portland cement, glass fibres are chemically attacked by the alkaline environment of 

the cement, which is not the case in an IPC matrix. Fire resistance could on the other hand be 

very interesting in explosion applications. 

3.2 Static behaviour 

The investigated textile reinforced IPC shows linear elastic behaviour up to failure when it is 

loaded in the direction of the non woven fabrics in compression (in plane) [Cuy01]. However, 

compared to most other composite materials, a TRC behaves strongly non-linear under tensile 

loading. This non-linearity is due to the cement matrix which has a rather low failure stress 

due to its low strain capacity. Since the fibre-matrix bond is rather weak compared to the 

bond in traditional composite materials, the fibres will be able to bridge the cracks due to 

debonding of the fibres from the matrix. If sufficient fibres are present, the stresses within a 

cross section, wherein a crack is situated, can be carried by the fibres. 
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A typical stress-strain curve obtained from a tensile test on a TRC with 2D random chopped 

strand glass fibre mats impregnated by an IPC matrix is presented in Fig. 3.1. Generally, three 

distinct stages can be identified: a first linear elastic stage where the fibre-matrix bond is 

globally adhesive. Once the global composite stress exceeds the matrix strength (around 10 

MPa), multiple cracking will occur leading to a fine parallel crack pattern and a deflection of 

the stress-strain curve. In the vicinity of a crack, the fibre-matrix bond is assumed to be 

reduced to a frictional shear stress. When all cracks are formed, the material behaves linear 

again (with a lower slope) and only the fibres will carry extra load up to failure of the 

composite. 

0

5

10

15

20

25

30

35

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8

nominal strain (%)

n
o
m

in
a

l 
s
tr

e
s
s
 (

M
P

a
).

 

 

TRC

FRC

ACK theorie σmc

εmc ∆εc

 

Fig. 3.1. Typical stress-strain curves of traditional FRC and a TRC laminate with  

  visualization of the ACK-theory. 

In order to determine the influence of strain rate on the tensile behaviour of TRCs, it is 

essential to define a parameterised model, which can represent each individual curve. In 

literature, a few models are available [Ave71, Cur98, Cuy06, Heg06]. One of these models, 

developed by Aveston, Cooper and Kelly, is called the ACK-theory [Ave71]. This is a model 

representing the three different stages mentioned above with three linear pieces (Fig. 3.1). 

This model is limited by some assumptions, such as the assumption of uni-directional fibre 

reinforcement. In a later stage this theory was adapted for more advanced cement composites. 

The main parameters of this model are:  

• the elastic modulus of the first linear elastic stage (EI). 

• the multiple cracking stress (σmc) and strain (εmc) to determine the point where the second 

stage begins. 

• the total strain in the composite due to the multiple cracking process (∆εc).  

• the elastic modulus of the third stage (EIII). 

• the tensile composite strength at the end of stage III (σcu). 

This theory however shows some discrepancy with the real behaviour of the composite, where 

multiple cracking will appear in a certain stress range and not at a deterministic stress level. 

This theory was adapted by Cuypers et al. [Cuy06] using a 2 parameter Weibull distribution 

function to describe the multiple cracking stage. 

In the experiments described in section 4, the second stage of the curve is rather small causing 

an abrupt transition from the first to the third stage. The model of Cuypers et al. is difficult to 
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fit since it is not certain to find the absolute minimum. Therefore, in this paper, a piecewise 

linear fit with two linear stages will be used to obtain an evolution of the material behaviour 

with increasing strain rate. For this model the following parameters are determined: 

• the elastic modulus of the first linear elastic stage (EI). 

• the elastic modulus of the third stage (EIII). 

• the tensile composite strength at the end of stage III (σcu). 

• the x- and y- coordinates of the intersection point of the two straight lines. These 

parameters represent the multiple cracking of the matrix. 

• the total energy obtained from the area under the stress-strain curve.  

A remark can be formulated concerning the EI parameter: the amount of data points in this 

stage is limited resulting in a large scatter when fixed boundaries for the calculation of the 

slope are used. Therefore a least square method with a variable amount of data points is used 

to determine the best fit. This gives better results, but it is still not completely reliable. The 

scatter on this parameter is even increased by previously induced damage.  

4 EXPERIMENTAL STUDY 

4.1 Specimen preparation and testing scheme 

The specimens are made of an IPC matrix reinforced with 2D random glass fibre mats. The 

laminated plates are produced by hand lay-up. A layer of matrix material is spread out on a 

flat surface which is coated with a demolding agent. Then a layer of fibres is applied and 

impregnated with a roller. This is repeated until the aimed amount of layers is obtained and 

afterwards the laminate is sealed with a plastic foil to prevent early evaporation of water. 

After one day of curing at room temperature, the plates are post cured at 60 °C for another 24 

h. Subsequently specimens with dimensions 250 mm x 25 mm were cut out with a water fed 

diamond saw. The thickness of the specimens depends on the amount of fibre layers that is 

applied. Each plate provides 20 specimens which are divided into 5 groups of 4 specimens. 

These five groups were tested at different strain rates from 1.10
-4

 s
-1

 to 0.05 s
-1

. The different 

strain rates are obtained by variation of the loading speed during tensile tests. The cross head 

speed is varied respectively from 1 mm/min to 500 mm/min (an overview is given in table 

4.1). All of these tests were performed on a universal testing machine (Instron 4505) with a 10 

kN load cell and an extensometer with a basis of 50 mm. Six different plates with different 

properties were manufactured. An overview of the manufactured plates and their properties is 

given in table 4.2. The aligned fibre volume fraction given in this table is calculated by 

dividing the fibre volume fraction (Vf) by 3 [Ben90].  

Table 4.1. strain rates at different loading speeds. 

Loading speed (mm/min) Strain rate (s-1) Test duration (s) 

1 0,0001 240 

10 0,001 24 

100 0,01 2,4 

200
1 

0,02 1,2 

2501 0,025 0,96 

500 0,05 0,48 
1 for the series 4-VfH-1 and -2 the speed was 200 mm/min instead of 250 mm/min 



6 VAN ACKEREN ET AL.: Strain rate effect on the mechanical behaviour of a textile reinforced cement composite 

Table 4.2. properties of the produced laminates 

Name Number of 
layers 

Thickness 
(mm) 

Standard deviation 
(mm) 

Average Vf 
(%) 

Average Vf 
aligned (%) 

4-VfH-1 4 2,22 0,05 21,3 7,1 

4-VfH-2 4 1,98  0,14 23,8 7,9 

4-VfL-1 4 2,49 0,05 19,1 6,4 

4-VfL-2 4 2,44 0,05 19,4 6,5 

8-VfH-1 8 4,46 0,11 21,2 7,1 

8-VfH-2 8 4,01 0,20 23,5 7,8 

4.2 Results 

First a closer look is given to the fitting of the stress-strain curves. As described above, the 

real stress-strain curve is fitted by a piecewise linear curve and consequently does not 

necessarily return good approximations. In Fig. 4.1 some fitted curves are presented. It is 

clear that the fit is very good except in plot c). Here the fit clearly deviates from the 

experimental curve. This is due to pull-out of the fibres which is not included in the model. 

Consequently, the stresses at a strain near the failure strain will be overestimated by the 

model. Therefore the maximum strain and the strength of the composite will be taken from 

the experimental data. Fibre pull-out did only occur in a few cases, while fibre fracture was 

mainly the damage mechanism leading to failure. The maximum deviation on the calculated 

energy absorption (area under the curves) between the real curves and the piecewise linear fit 

stays below 5 %. 

 

Fig. 4.1. Fitting of piecewise linear model on experimental stress-strain curves 

From Table 4.2 it was clear that two plates with the same theoretical properties, such as 4-

VfH-1 and 4-VfH-2, do not show the same fibre volume fractions due to the differences in the 

thickness and the scatter on this parameter. Therefore, all results were kept separately for each 

individual plate. In this paper only the results of one series will be shown. The other series 

mainly exhibit the same trends in the results with some minor deviations.  

The evolution of the above described parameters for laminate 4-VfL-2, as a function of the 

loading speed, is presented in Fig. 4.2 in separate graphs. In these graphs each point 

represents the mean value of at least three and maximum four experimentally determined 

values. The error bars that are drawn correspond to one standard deviation on each side of the 

data point. The scatter on these results is rather high, for instance in graph a) and b) 

representing the strain rate effect on respectively the strength and the maximum strain of the 

composite material. Nevertheless, the mean values of these two parameters hardly change 

with increasing loading speed. There seems to be no influence of the strain rate on the 

4-VfH-2 
loading speed: 10 mm/min 

4-VfL-1 
loading speed: 250 mm/min 

4-VfL-2 
loading speed: 100 mm/min 

a) b) c) 
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strength and maximum strain of the composite as well as on the modulus of the first and the 

third stage (graph c) and d)). 

 

 

Fig. 4.2. Results of the strain rate effect on laminate 4-VfL-2. 

In contrast with the discussed parameters, strain rate clearly has an effect on the stress and 

strain at the intersection point, as depicted in graphs e) and f). These parameters increase with 

increasing strain rate and it seems that they will even augment more at higher strain rates. The 

effect of the latter parameters on the total absorbed energy is rather small, since they represent 

only the first stage of the stress-strain curve. The data points in graph g) consequently follow 

mainly the trends of strength and maximum strain. 

b) 

d) 

e) f) 

g) 

c) 

a) 
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The most acceptable explanation for the delay of the multiple cracking process to higher 

stress levels is that at higher testing speeds, flaws (very small defects) in the cement matrix 

don’t have the time to grow due to the fast loading. The higher strain rate might also influence 

the bond between fibre and matrix. 

Similar tests at identical loading speeds were performed on the five other plates. These tests 

confirmed the increase of the values of the intersection point with increasing strain rate. In 

some cases a slight increase in either strength or maximum strain was noticed. Whether there 

is an influence of the strain rate on these values is not clear due to the contradictory results. It 

was however found that the changes in these parameters were only due to differences in fibre 

volume fraction between several data series of the same graph. A more objective value 

representing the strength of the composite without influence of fibre volume fraction is the 

fibre strength at the moment of failure which can be calculated with the following formula: 

alignedf

c

f
V ,

max,

σ
σ =   (4.1) 

where:  max,fσ = the maximum fibre stress (MPa);       

  
cσ  = the composite strength (MPa);      

  alignedfV ,  = the amount of fibres in the direction of the loading (%)  

A plot including all data of all tested laminates is depicted in Fig. 4.3, showing that there is no 

effect of the strain rate on the fibre strength and thus there is no influence on the composite 

strength. There is also one extra data point on this graph at a loading speed of 0.005 mm/min, 

which is a very slow test. A slight decrease in fibre strength is observed which means that 

near the end of the stress-strain curves the fibres will break earlier than at static loading 

speeds. This can be explained through a phenomenon called static fatigue. This is a well 

documented phenomenon for a lot of materials such as for instance glass [Fre80]. They 

perform less when they are subjected to slowly applied static loads, since small defects 

(micro-cracks), due to manufacturing or handling, are able to grow. 
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Fig. 4.3. Strength as a function for all specimens, independent of the fibre volume fraction. 
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One series of specimens was made in addition to the previous series of specimens in order to 

test them at even slightly higher strain rates. For these tests a servo hydraulic machine (MTS) 

was used. The strain rates which were chosen are 0.02 s
-1

; 0.06 s
-1

; 0.3 s
-1

 and 0.6 s
-1

 

corresponding to loading speeds of 200 mm/min up to 6000 mm/min. The latter speed is the 

one where the machine is still sufficiently stable to obtain a straight displacement-time curve 

with a slope of 6000 mm/min. These tests indicate that the increase of the position of the 

intersection point seems to stagnate at a stress level of approximately 11 MPa. These tests 

however have to be confirmed in additional tests in the future since they are very limited now. 

A final comment concerning eventually future work on this topic can be stated here: it was 

found in this research that the results on specimens containing 4 layers of fibres show 

generally more scatter (higher spreading on the results) on most parameters than on 

specimens containing 8 layers. This is logical since for a test piece that is thinner and thus 

possesses less fibre layers there are relatively more defects present in the material in an 

unloaded state. For test pieces with many layers, these defects are averaged more. It is 

therefore appropriate for further studies to test specimens with 8 or more layers of fibres. 

5   CONCLUSIONS 

In the presented work the aim was to identify the influence of strain rate on the tensile 

behaviour of glass fibre reinforced IPC composite laminates. The applied strain rates are all 

part of a quasi static range, with the highest values getting near low velocity impact. Several 

series of specimens were tested showing that the strain rate does influence the tensile stress-

strain behaviour. The main damage mechanisms in the tensile behaviour of the material stay 

the same. However, at higher strain rates the multiple cracking mechanism is delayed to 

higher stress levels, which leads to a larger linear elastic stage. This can be explained by 

assuming that at higher strain rates the fibre-matrix interface and the cement matrix itself do 

not get sufficient time to develop damage. 

This research will certainly have its effect on the way impact on IPC composites can be 

modelled. If the strain rate effect is taken into account in designing impact absorbing or 

impact resistant applications, the material can be used in a more optimal way. In the future it 

would be the aim to develop a simple model or a database describing the real stress-strain 

behaviour at different strain rates. 
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