682 research outputs found
Activity and electron donor preference of two denitrifying bacterial strains identified by Raman gas spectroscopy
Human activities have greatly increased the input of reactive nitrogen species into the environment and disturbed the balance of the global N cycle. This imbalance may be offset by bacterial denitrification, an important process in maintaining the ecological balance of nitrogen. However, our understanding of the activity of mixotrophic denitrifying bacteria is not complete, as most research has focused on heterotrophic denitrification. The aim of this study was to investigate substrate preferences for two mixotrophic denitrifying bacterial strains, Acidovorax delafieldii and Hydrogenophaga taeniospiralis, under heterotrophic, autotrophic or mixotrophic conditions. This complex analysis was achieved by simultaneous identification and quantification of H(2), O(2), CO(2), (14)N(2), (15)N(2) and (15)N(2)O in course of the denitrification process with help of cavity-enhanced Raman spectroscopic (CERS) multi-gas analysis. To disentangle electron donor preferences for both bacterial strains, microcosm-based incubation experiments under varying substrate conditions were conducted. We found that Acidovorax delafieldii preferentially performed heterotrophic denitrification in the mixotrophic sub-experiments, while Hydrogenophaga taeniospiralis preferred autotrophic denitrification in the mixotrophic incubation. These observations were supported by stoichiometric calculations. The results demonstrate the prowess of advanced Raman multi-gas analysis to study substrate use and electron donor preferences in denitrification, based on the comprehensive quantification of complex microbial gas exchange processes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00216-021-03541-y
Generative adversarial collaborations:A practical guide for conference organizers and participating scientists
Generative adversarial collaborations (GACs) are a form of formal teamwork between groups of scientists with diverging views. The goal of GACs is to identify and ultimately resolve the most important challenges, controversies, and exciting theoretical and empirical debates in a given research field. A GAC team would develop specific, agreed-upon avenues to resolve debates in order to move a field of research forward in a collaborative way. Such adversarial collaborations have many benefits and opportunities but also come with challenges. Here, we use our experience from (1) creating and running the GAC program for the Cognitive Computational Neuroscience (CCN) conference and (2) implementing and leading GACs on particular scientific problems to provide a practical guide for future GAC program organizers and leaders of individual GACs
Generative Adversarial Collaborations: A practical guide for conference organizers and participating scientists
Generative adversarial collaborations (GACs) are a form of formal teamwork
between groups of scientists with diverging views. The goal of GACs is to
identify and ultimately resolve the most important challenges, controversies,
and exciting theoretical and empirical debates in a given research field. A GAC
team would develop specific, agreed-upon avenues to resolve debates in order to
move a field of research forward in a collaborative way. Such adversarial
collaborations have many benefits and opportunities but also come with
challenges. Here, we use our experience from (1) creating and running the GAC
program for the Cognitive Computational Neuroscience (CCN) conference and (2)
implementing and leading GACs on particular scientific problems to provide a
practical guide for future GAC program organizers and leaders of individual
GACs
The in-process control of PVC sheath of a double core cable
In this work the possibility of the sheath hermiticity testing by measuring of the cable capacity per unit length variation during spark testing is considered. The research object is 2•0.75 HO3VVH2-F cable. According to the physical modelling it is proved that such defect of sheath as pinhole through the whole thickness of sheath can be registered for the test length 10 cm with test voltage frequencies 1kHz and 10kHz
A semisynthetic glycoconjugate provides expanded cross-serotype protection against Streptococcus pneumoniae
Streptococcus pneumoniae (S. pneumoniae) infections are the leading cause of child mortality globally. Current vaccines fail to induce a protective immune response towards a conserved part of the pathogen, resulting in new serotypes causing disease. Therefore, new vaccine strategies are urgently needed. Described is a two-pronged approach combining S. pneumoniae proteins, pneumolysin (Ply) and pneumococcal surface protein A (PspA), with a precisely defined synthetic oligosaccharide, whereby the carrier protein acts as a serotype-independent antigen to provide additional protection. Proof of concept in mice and swine models revealed that the conjugates inhibited colonization of the nasopharynx, decreased the bacterial load and reduced disease severity in the bacteria challenge model. Immunization of piglets provided the first evidence for the immunogenicity and protective potential of synthetic glycoconjugate vaccine in a large animal model. A combination of synthetic oligosaccharides with proteins from the target pathogen opens the path to create broadly cross-protective (“universal”) pneumococcal vaccines
Reconstruction of ancient microbial genomes from the human gut
Loss of gut microbial diversity1–6 in industrial populations is associated with chronic diseases7, underscoring the importance of studying our ancestral gut microbiome. However, relatively little is known about the composition of pre-industrial gut microbiomes. Here we performed a large-scale de novo assembly of microbial genomes from palaeofaeces. From eight authenticated human palaeofaeces samples (1,000–2,000 years old) with well-preserved DNA from southwestern USA and Mexico, we reconstructed 498 medium- and high-quality microbial genomes. Among the 181 genomes with the strongest evidence of being ancient and of human gut origin, 39% represent previously undescribed species-level genome bins. Tip dating suggests an approximate diversification timeline for the key human symbiont Methanobrevibacter smithii. In comparison to 789 present-day human gut microbiome samples from eight countries, the palaeofaeces samples are more similar to non-industrialized than industrialized human gut microbiomes. Functional profiling of the palaeofaeces samples reveals a markedly lower abundance of antibiotic-resistance and mucin-degrading genes, as well as enrichment of mobile genetic elements relative to industrial gut microbiomes. This study facilitates the discovery and characterization of previously undescribed gut microorganisms from ancient microbiomes and the investigation of the evolutionary history of the human gut microbiota through genome reconstruction from palaeofaeces.Ethics Overview of samples Reference-based taxonomic composition De novo genome reconstruction Methanobrevibacter smithii tip dating Functional genomic analysis Discussion Online content Method
High-E_T dijet photoproduction at HERA
The cross section for high-E_T dijet production in photoproduction has been
measured with the ZEUS detector at HERA using an integrated luminosity of 81.8
pb-1. The events were required to have a virtuality of the incoming photon,
Q^2, of less than 1 GeV^2 and a photon-proton centre-of-mass energy in the
range 142 < W < 293 GeV. Events were selected if at least two jets satisfied
the transverse-energy requirements of E_T(jet1) > 20 GeV and E_T(jet2) > 15 GeV
and pseudorapidity requirements of -1 < eta(jet1,2) < 3, with at least one of
the jets satisfying -1 < eta(jet) < 2.5. The measurements show sensitivity to
the parton distributions in the photon and proton and effects beyond
next-to-leading order in QCD. Hence these data can be used to constrain further
the parton densities in the proton and photon.Comment: 36 pages, 13 figures, 20 tables, including minor revisions from
referees. Accepted by Phys. Rev.
Search for Single-top Production in ep Collisions at HERA
A search for single-top production, ep→etX, has been performed with the ZEUS detector at HERA using data corresponding to an integrated luminosity of 0.37 fb -1. No evidence for top production was found, consistent with the expectation from the Standard Model. Limits were computed for single-top production via flavour changing neutral current transitions involving a neutral electroweak vector boson, γ or Z. The result was combined with a previous ZEUS result yielding a total luminosity of 0.50 fb -1. A 95% credibility level upper limit of 0.13 pb was obtained for the cross section at the centre-of-mass energy of √s=315 GeV. © 2012 Elsevier B.V
Measurement of the t Dependence in Exclusive Photoproduction of Υ{hooked} (1S) Mesons at HERA
The exclusive photoproduction reaction γp→Υ{hooked} (1S)p has been studied with the ZEUS detector in ep collisions at HERA using an integrated luminosity of 468 pb -1. The measurement covers the kinematic range 6
Angular Correlations in Three-jet Events in ep Collisions at HERA
Three-jet production in deep inelastic ep scattering and photoproduction was investigated with the ZEUS detector at HERA using an integrated luminosity of up to 127pb-1. Measurements of differential cross sections are presented as functions of angular correlations between the three jets in the final state and the proton-beam direction. These correlations provide a stringent test of perturbative QCD and show sensitivity to the contributions from different color configurations. Fixed-order perturbative calculations assuming the values of the color factors CF, CA, and TF as derived from a variety of gauge groups were compared to the measurements to study the underlying gauge group symmetry. The measured angular correlations in the deep inelastic ep scattering and photoproduction regimes are consistent with the admixture of color configurations as predicted by SU(3) and disfavour other symmetry groups, such as SU(N) in the limit of large N. © 2012 American Physical Society
- …