147 research outputs found

    In vivo bioimpedance measurement of healthy and ischaemic rat brain: implications for stroke imaging using electrical impedance tomography.

    Get PDF
    In order to facilitate the imaging of haemorrhagic and ischaemic stroke using frequency difference electrical impedance tomography (EIT), impedance measurements of normal and ischaemic brain, and clotted blood during haemorrhage, were gathered using a four-terminal technique in an in vivo animal model, a first for ischaemic measurements. Differences of 5-10% in impedance were seen between the frequency spectrums of healthy and ischaemic brain, over the frequency range 0-3 kHz, while the spectrum of blood was predominately uniform. The implications of imaging blood/ischaemia in the brain using electrical impedance tomography are discussed, supporting the notion that it will be possible to differentiate stroke from haemorrhage

    In vivo bioimpedance changes during haemorrhagic and ischaemic stroke in rats: Towards 3D stroke imaging using electrical impedance tomography

    Get PDF
    Electrical impedance tomography (EIT) could be used as a portable non-invasive means to image the development of ischaemic stroke or haemorrhage. The purpose of this study was to examine if this was possible using time difference imaging, in the anesthetised rat using 40 spring-loaded scalp electrodes with applied constant currents of 50-150 μA at 2 kHz. Impedance changes in the largest 10% of electrode combinations were -12.8% ± 12.0% over the first 10 min for haemorrhage and +46.1% ± 37.2% over one hour for ischaemic stroke (mean ± SD, n = 7 in each group). The volume of the pathologies, assessed by tissue section and histology post-mortem, was 12.6 μl ± 17.6 μl and 12.6 μl ± 17.6 μl for haemorrhage and ischaemia respectively. In time difference EIT images, there was a correspondence with the pathology in 3/7 cases of haemorrhage and none of the ischaemic strokes. Although the net impedance changes were physiologically reasonable and consistent with expectations from the literature, it was disappointing that it was not possible to obtain reliable EIT images. The reason for this are not clear, but probably include confounding effects of secondary ischaemia for haemorrhage and tissue and cerebrospinal fluid shifts for the stroke model. With this method, it does not appear that EIT with scalp electrodes is yet ready for clinical use

    La maturescence : période critique d’âge entre 40-65 ans. Santé, maladie, vieillissement et âges sociaux

    Get PDF
    L'apparition récente d'une période critique d'âge, située entre 40 et 65 ans, et appelée la « maturescence », est un produit de la vie sociale des sociétés industrielles. Comme carrefour du vieillissement, cette période d'âge n'est pas liée à un âge chronologique précis (cap de la quarantaine ou de la cinquantaine), mais davantage à des difficultés d'âge social associées à des conflits d'identité, à mettre en rapport avec des problèmes spécifiques de santé, de maladie, propres aux effets du vieillissement.The recent emergence of a critical phase in life called maturescence, situated between the ages of 40 and 65, is a by-product of social life in industrialized societies. Because it is considered as a crossroads, this phase in life is not connected with any particular chronological age, such as reaching forty or fifty. Rather, it involves the difficulties of aging in society and the oncoming of identity conflicts, all of which must be seen in relation with the specific health-related problems that result from aging

    Influence de la rugosité de surface du substrat sur l'adhérence de revêtements à base d'aluminium élaborés par projection dynamique par gaz froid ("cold spray")

    Get PDF
    The cold spray process is based on high-speed spraying of a powder onto a substrate. The formation of a more or less dense coating depends on sprayed particle adhesion and coating build-up. The repair of metallic or composite aircraft / aerospace components is a recent application of cold spraying. The particle-substrate bond strength is due to various mechanisms, including mechanical anchoring. Substrate material hardness and surface topography governs the degree of mechanical anchoring. This thesis study is centered on the influence of these two contributions. Pure metallic and composite systems with different mechanical properties are selected. Particle deposition onto rough surfaces is investigated through the development of pure aluminium coating of harder aluminum alloy substrates. Plastic deformation and build-up mechanisms are studied for Al-SiC coatings onto ductile substrate. All the coatings resulted from an optimization stage where process parameters and materials properties are considered (gas temperature, gas pressure, particle size). Particle impact conditions are also determined by particle speed experimental measurements (using a DPV 2000 system). Substrate temperatures are determined using thermocouple and particle temperatures are studied by numerical simulation. Mechanical anchoring of particles is investigated by cross-section observation of the coating-substrate interface. Hardness gradient is also quantified. An analysis of sand-blasted surfaces morphology is performed to correlate particle size and roughness parameters. A model of particle impact is established from a finite element analysis of interface plastic deformation as a function of surface topography. Lastly, dynamic adhesion testing using a laser shock (LASAT®) are undertaken to study the potential role of interface roughness on the fracture thresholds in the light of a numerical analysis.Le principe du procédé cold spray réside dans la projection de poudres à haute vitesse sur un matériau, le substrat. La formation d'un revêtement plus ou moins dense à sa surface passe par l'adhérence et l'empilement des particules projetées. Un des domaines d'application d'un tel procédé est la réparation de composants métalliques ou composites utilisés dans le secteur aéronautique. Les particules et le substrat adhèrent par différents mécanismes, notamment mécaniques. Les duretés respectives des matériaux et la topographie de surface du substrat influent sur l'intensité de cet ancrage mécanique. Cette étude permet de statuer sur ces deux contributions. Pour cela, des systèmes purement métalliques et composites aux propriétés mécaniques différentes sont choisis. Le dépôt de particules sur des surfaces rugueuses est étudié à travers l'élaboration de revêtements d'aluminium pur sur substrats d'alliage d'aluminium plus durs. Des mécanismes de déformation plastique et d'empilement sont analysés par construction de revêtements d'Al-SiC sur aluminium. L'élaboration de ces revêtements passe par l'optimisation de nombreux paramètres liés au procédé et à la nature des matériaux (température, pression, granulométrie). Les conditions d'impact des particules sont également déterminées par l'emploi de techniques mesurant la vitesse des poudres projetées (DPV 2000), la température du substrat par thermocouples et la température des particules par simulation numérique. L'ancrage mécanique des particules est analysé par observation en coupe de l'interface revêtement-substrat. Le gradient de dureté est également quantifié. Une analyse de la morphologie des surfaces sablées est réalisée afin de corréler la granulométrie des particules aux dimensions de rugosité mesurées. Un modèle d'impact par simulation numérique est mis en place pour étudier les déformations plastiques des interfaces en fonction de la topographie de surface. Enfin, des essais d'adhérence par choc laser (LASAT®) sont entrepris afin d'identifier le rôle de la rugosité d'interface sur les seuils de rupture déterminés numériquement

    Hydroxycarboxylic Acid Receptor 1 and Neuroprotection in a Mouse Model of Cerebral Ischemia-Reperfusion.

    Get PDF
    Lactate is an intriguing molecule with emerging physiological roles in the brain. It has beneficial effects in animal models of acute brain injuries and traumatic brain injury or subarachnoid hemorrhage patients. However, the mechanism by which lactate provides protection is unclear. While there is evidence of a metabolic effect of lactate providing energy to deprived neurons, it can also activate the hydroxycarboxylic acid receptor 1 (HCAR1), a Gi-coupled protein receptor that modulates neuronal firing rates. After cerebral hypoxia-ischemia, endogenously produced brain lactate is largely increased, and the exogenous administration of more lactate can decrease lesion size and ameliorate the neurological outcome. To test whether HCAR1 plays a role in lactate-induced neuroprotection, we injected the agonists 3-chloro-5-hydroxybenzoic acid and 3,5-dihydroxybenzoic acid into mice subjected to 30-min middle cerebral artery occlusion. The in vivo administration of HCAR1 agonists at reperfusion did not appear to exert any relevant protective effect as seen with lactate administration. Our results suggest that the protective effects of lactate after hypoxia-ischemia come rather from the metabolic effects of lactate than its signaling through HCAR1

    Real-time frequency-encoded spatiotemporal focusing

    Get PDF
    We present a novel real-time frequency-encoded spatiotemporal (FEST) focusing technology using a programmable two-dimensional optical frequency comb. This technique enables, for the first time, simultaneous spatial and temporal focusing at microseconds through thick scattering media

    Involvement of caveolin-1 in neurovascular unit remodeling after stroke: Effects on neovascularization and astrogliosis.

    Get PDF
    Complex cellular and molecular events occur in the neurovascular unit after stroke, such as blood-brain barrier (BBB) dysfunction and inflammation that contribute to neuronal death, neurological deterioration and mortality. Caveolin-1 (Cav-1) has distinct physiological functions such as caveolae formation associated with endocytosis and transcytosis as well as in signaling pathways. Cav-1 has been proposed to be involved in BBB dysfunction after brain injury; however, its precise role is poorly understood. The goal of this study was to characterize the expression and effect of Cav-1 deletion on outcome in the first week in a transient Middle Cerebral Artery Occlusion stroke model. We found increased Cav-1 expression in new blood vessels in the lesion and in reactive astrocytes in the peri-lesion areas. In Cav-1 KO mice, the lesion volume was larger and the behavioral outcome worse than in WT mice. Cav-1 KO mice exhibited reduced neovascularization and modified astrogliosis, without formation of a proper glial scar around the lesion at three days post injury, coinciding with aggravated outcomes. Altogether, these results point towards a potential protective role of endogenous Cav-1 in the first days after ischemia by promoting neovascularization, astrogliosis and scar formation

    Extended preclinical investigation of lactate for neuroprotection after ischemic stroke

    Get PDF
    Lactate has been shown to have beneficial effect both in experimental ischemia–reperfusion models and in human acute brain injury patients. To further investigate lactate’s neuroprotective action in experimental in vivo ischemic stroke models prior to its use in clinics, we tested (1) the outcome of lactate administration on permanent ischemia and (2) its compatibility with the only currently approved drug for the treatment of acute ischemic stroke, recombinant tissue plasminogen activator (rtPA), after ischemia–reperfusion. We intravenously injected mice with 1 µmol/g sodium l -lactate 1 h or 3 h after permanent middle cerebral artery occlusion (MCAO) and looked at its effect 24 h later. We show a beneficial effect of lactate when administered 1 h after ischemia onset, reducing the lesion size and improving neurological outcome. The weaker effect observed at 3 h could be due to differences in the metabolic profiles related to damage progression. Next, we administered 0.9 mg/kg of intravenous (iv) rtPA, followed by intracerebroventricular injection of 2 µL of 100 mmol/L sodium l -lactate to treat mice subjected to 35-min transient MCAO and compared the outcome (lesion size and behavior) of the combined treatment with that of single treatments. The administration of lactate after rtPA has positive influence on the functional outcome and attenuates the deleterious effects of rtPA, although not as strongly as lactate administered alone. The present work gives a lead for patient selection in future clinical studies of treatment with inexpensive and commonly available lactate in acute ischemic stroke, namely patients not treated with rtPA but mechanical thrombectomy alone or patients without recanalization therapy

    A Custom EIT System Based On Off-The-Shelf Equipment

    Get PDF
    The construction of an EIT system using a commercially available current source and EEG amplifier is discussed. The Keithley 6221 current source offers functionality equivalent to that of existing bespoke systems, alongside the ease of use of a commercial system. When combined with a BioSemi EEG amplifier, a full EIT system is produced. Analysis of the signal quality of the source and imaging experiments on a saline tank verify the feasibility of the approach
    corecore