50 research outputs found
Historical influence of soil and water management on sediment and carbon budgets in the United States
This paper is not subject to U.S. copyright. The definitive version was published in Applied Geochemistry 26 (2011): S259, doi:10.1016/j.apgeochem.2011.03.118.The documented history of US soil and water management provides a unique opportunity to examine soil and sediment C storage under conditions of changing management practices. Historical acceleration of erosion due to cultivation has been moderated by improved soil management. Increased construction of dams and locks has expanded areas of aquatic sedimentation in reservoirs and ponds. Enhanced historical sediment deposition rates have been documented in lakes and estuaries. All of these changes have an impact on terrestrial C storage and turnover. The present-day C budget associated with erosion and burial cannot be determined without quantifying the time-dependent changes due to past and present soil and water management
Monitoring Drought Impact on Annual Forage Production in Semi-Arid Grasslands: A Case Study of Nebraska Sandhills
Land management practices and disturbances (e.g. overgrazing, fire) have substantial effects on grassland forage production. When using satellite remote sensing to monitor climate impacts, such as drought stress on annual forage production, minimizing land management practices and disturbance effects sends a clear climate signal to the productivity data. This study investigates the effect of this climate signal by: (1) providing spatial estimates of expected biomass under specific climate conditions, (2) determining which drought indices explain the majority of interannual variability in this biomass, and (3) developing a predictive model that estimates the annual biomass early in the growing season. To address objective 1, this study uses an established methodology to determine Expected Ecosystem Performance (EEP) in the Nebraska Sandhills, US, representing annual forage levels after accounting for non-climatic influences. Moderate Resolution Imaging Spectroradiometer (MODIS)-based Normalized Dierence Vegetation Index (NDVI) data were used to approximate actual ecosystem performance. Seventeen years (2000â2016) of annual EEP was calculated using piecewise regression tree models of site potential and climate data. Expected biomass (EB), EEP converted to biomass in kg*ha-1*yr-1, was then used to examine the predictive capacity of several drought indices and the onset date of the growing season. Subsets of these indices were used to monitor and predict annual expected grassland biomass. Independent field-based biomass production data available from two Sandhills locations were used for validation of the EEP model. The EB was related to field-based biomass production (R2 = 0.66 and 0.57) and regional rangeland productivity statistics of the Soil Survey Geographic Database (SSURGO) dataset. The Evaporative Stress Index (ESI), the 3- and 6-month Standardized Precipitation Index (SPI), and the U.S. Drought Monitor (USDM), which represented moisture conditions during May, June and July, explained the majority of the interannual biomass variability in this grassland system (three-month ESI explained roughly 72% of the interannual biomass variability). A new model was developed to use drought indices from early in the growing season to predict the total EB for the whole growing season. This unique approach considers only climate-related drought signal on productivity. The capability to estimate annual EB by the end of May will potentially enable land managers to make informed decisions about stocking rates, hay purchase needs, and other management issues early in the season, minimizing their potential drought losses
Palliative care for cancer patients in a primary health care setting: Bereaved relatives' experience, a qualitative group interview study
<p>Abstract</p> <p>Background</p> <p>Knowledge about the quality and organisation of care to terminally ill cancer patients with a relatives' view in a primary health care setting is limited.</p> <p>The aim of the study is to analyse experiences and preferences of bereaved relatives to terminally ill cancer patients in a primary care setting to explore barriers and facilitators for delivery of good palliative home care.</p> <p>Methods</p> <p>Three focus group interviews with fourteen bereaved relatives in Aarhus County, Denmark.</p> <p>Results</p> <p>Three main categories of experience were identified: 1) The health professionals' management, where a need to optimize was found. 2) Shared care, which was lacking. 3) The relatives' role, which needs an extra focus.</p> <p>Conclusion</p> <p>Relatives experience insufficient palliative care mainly due to organizational and cultural problems among professionals. Palliative care in primary care in general needs improvement and attention should be drawn to the "professionalization" of the relatives and the need to strike a balance between their needs, wishes and resources in end-of-life care and bereavement.</p
Tactual perception: a review of experimental variables and procedures
This paper reviews literature on tactual perception. Throughout this review we will highlight some of the most relevant variables in touch literature: interaction between touch and other senses; type of stimuli, from abstract stimuli such as vibrations, to two- and three-dimensional stimuli, also considering concrete stimuli such as the relation between familiar and unfamiliar stimuli or the haptic perception of faces; type of participants, separating studies with blind participants, studies with children and adults, and an analysis of sex differences in performance; and finally, type of tactile exploration, considering conditions of active and passive touch, the relevance of movement in touch and the relation between exploration and time. This review intends to present an organised overview of the main variables in touch experiments, attending to the main findings described in literature, to guide the design of future works on tactual perception and memory.This work was funded by the Portuguese âFoundation for Science and Technologyâ through PhD scholarship SFRH/BD/35918/2007
Accuracy and precision of tidal wetland soil carbon mapping in the conterminous United States
© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 8 (2018): 9478, doi:10.1038/s41598-018-26948-7.Tidal wetlands produce long-term soil organic carbon (C) stocks. Thus for carbon accounting purposes, we need accurate and precise information on the magnitude and spatial distribution of those stocks. We assembled and analyzed an unprecedented soil core dataset, and tested three strategies for mapping carbon stocks: applying the average value from the synthesis to mapped tidal wetlands, applying models fit using empirical data and applied using soil, vegetation and salinity maps, and relying on independently generated soil carbon maps. Soil carbon stocks were far lower on average and varied less spatially and with depth than stocks calculated from available soils maps. Further, variation in carbon density was not well-predicted based on climate, salinity, vegetation, or soil classes. Instead, the assembled dataset showed that carbon density across the conterminous united states (CONUS) was normally distributed, with a predictable range of observations. We identified the simplest strategy, applying mean carbon density (27.0âkg C mâ3), as the best performing strategy, and conservatively estimated that the top meter of CONUS tidal wetland soil contains 0.72 petagrams C. This strategy could provide standardization in CONUS tidal carbon accounting until such a time as modeling and mapping advancements can quantitatively improve accuracy and precision.Synthesis efforts were funded by NASA Carbon Monitoring System (CMS; NNH14AY67I), USGS LandCarbon and the Smithsonian Institution. J.R.H. was additionally supported by the NSF-funded Coastal Carbon Research Coordination Network while completing this manuscript (DEB-1655622). J.M.S. coring efforts were funded by NSF (EAR-1204079). B.P.H. coring efforts were funded by Earth Observatory (Publication Number 197)
Quality of life after postmastectomy radiotherapy in patients with intermediate-risk breast cancer (SUPREMO): 2-year follow-up results of a randomised controlled trial
Background
Postmastectomy radiotherapy in patients with four or more positive axillary nodes reduces breast cancer mortality, but its role in patients with one to three involved nodes is controversial. We assessed the effects of postmastectomy radiotherapy on quality of life (QOL) in women with intermediate-risk breast cancer.
Methods
SUPREMO is an open-label, international, parallel-group, randomised, controlled trial. Women aged 18 years or older with intermediate-risk breast cancer (defined as pT1â2N1; pT3N0; or pT2N0 if also grade III or with lymphovascular invasion) who had undergone mastectomy and, if node positive, axillary surgery, were randomly assigned (1:1) to receive chest wall radiotherapy (50 Gy in 25 fractions or a radiobiologically equivalent dose of 45 Gy in 20 fractions or 40 Gy in 15 fractions) or no radiotherapy. Randomisation was done with permuted blocks of varying block length, and stratified by centre, without masking of patients or investigators. The primary endpoint is 10-year overall survival. Here, we present 2-year results of QOL (a prespecified secondary endpoint). The QOL substudy, open to all UK patients, consists of questionnaires (European Organisation for Research and Treatment of Cancer QLQ-C30 and QLQ-BR23, Body Image Scale, Hospital Anxiety and Depression Scale [HADS], and EQ-5D-3L) completed before randomisation, and at 1, 2, 5, and 10 years. The prespecified primary outcomes within this QOL substudy were global QOL, fatigue, physical function, chest wall symptoms, shoulder and arm symptoms, body image, and anxiety and depression. Data were analysed by intention to treat, using repeated mixed-effects methods. This trial is registered with the ISRCTN registry, number ISRCTN61145589.
Findings
Between Aug 4, 2006, and April 29, 2013, 1688 patients were enrolled internationally and randomly assigned to receive chest wall radiotherapy (n=853) or not (n=835). 989 (79%) of 1258 patients from 111 UK centres consented to participate in the QOL substudy (487 in the radiotherapy group and 502 in the no radiotherapy group), of whom 947 (96%) returned the baseline questionnaires and were included in the analysis (radiotherapy, n=471; no radiotherapy, n=476). At up to 2 years, chest wall symptoms were worse in the radiotherapy group than in the no radiotherapy group (mean score 14·1 [SD 15·8] in the radiotherapy group vs 11·6 [14·6] in the no radiotherapy group; effect estimate 2·17, 95% CI 0·40â3·94; p=0·016); however, there was an improvement in both groups between years 1 and 2 (visit effect â1·34, 95% CI â2·36 to â0·31; p=0·010). No differences were seen between treatment groups in arm and shoulder symptoms, body image, fatigue, overall QOL, physical function, or anxiety or depression scores.
Interpretation
Postmastectomy radiotherapy led to more local (chest wall) symptoms up to 2 years postrandomisation compared with no radiotherapy, but the difference between groups was small. These data will inform shared decision making while we await survival (trial primary endpoint) results.
Funding
Medical Research Council, European Organisation for Research and Treatment of Cancer, Cancer Australia, Dutch Cancer Society, Trustees of Hong Kong and Shanghai Banking Corporation
Wetlands
North America is currently a net source of CO2 to the atmosphere, contributing to the global buildup of greenhouse gases in the atmosphere and associated changes in the Earth\u27s climate. In 2003, North America emitted nearly two billion metric tonnes of carbon to the atmosphere as CO2. North America\u27s fossil-fuel emissions in 2003 (1856 million metric tonnes of carbon ±10% with 95% certainty) were 27% of global emissions. Approximately 85% of those emissions were from the USA, 9% from Canada, and 6% from Mexico. The combustion of fossil fuels for commercial energy (primarily electricity) is the single largest contributor, accounting for approximately 42% of North American fossil emissions in 2003. Transportation is the second largest, accounting for 31% of total emissions. There are also globally important carbon sinks in North America. In 2003, growing vegetation in North America removed approximately 500 million tonnes of carbon per year (±50%) from the atmosphere and stored it as plant material and soil organic matter. This land sink is equivalent to approximately 30% of the fossil-fuel emissions from North America. The imbalance between the fossil-fuel source and the sink on land is a net release to the atmosphere of 1350 million metric tonnes of carbon year (±25%). Approximately 50% of North America\u27s terrestrial sink is due to the regrowth of forests in the USA on former agricultural land that was last cultivated decades ago, and on timberland recovering from harvest. Other sinks are relatively small and not well quantified with uncertainties of 100% or more. The future of the North American terrestrial sink is also highly uncertain. The contribution of forest regrowth is expected to decline as the maturing forests grow more slowly and take up less CO2 from the atmosphere. However, the response of regrowing forests and other sinks to climatic changes and CO2 concentration in the atmosphere is highly uncertain. The large difference between current sources and sinks and the expectation that the difference could become large if the growth of fossil-fuel emissions continues and land sinks decline suggest that addressing imbalances in the North American carbon budget will likely require actions focused on reducing fossil-fuel emissions. Options to enhance sinks (growing forests or sequestering carbon in agricultural soils) can contribute, but enhancing sinks alone is likely insufficient to deal with either the current or future imbalance. Options to reduce emissions include efficiency improvement, fuel switching, and technologies such as carbon capture and geological storage. Implementing these options will likely require an array of policy instruments at local, regional, national, and international levels, ranging from the encouragement of voluntary actions to economic incentives, tradable emissions permits, and regulations. Meeting the demand for information by decision makers will likely require new modes of research characterized by close collaboration between scientists and carbon management stakeholders.https://digitalcommons.chapman.edu/sees_books/1005/thumbnail.jp
Monitoring Drought Impact on Annual Forage Production in Semi-Arid Grasslands: A Case Study of Nebraska Sandhills
Land management practices and disturbances (e.g. overgrazing, fire) have substantial effects on grassland forage production. When using satellite remote sensing to monitor climate impacts, such as drought stress on annual forage production, minimizing land management practices and disturbance effects sends a clear climate signal to the productivity data. This study investigates the effect of this climate signal by: (1) providing spatial estimates of expected biomass under specific climate conditions, (2) determining which drought indices explain the majority of interannual variability in this biomass, and (3) developing a predictive model that estimates the annual biomass early in the growing season. To address objective 1, this study uses an established methodology to determine Expected Ecosystem Performance (EEP) in the Nebraska Sandhills, US, representing annual forage levels after accounting for non-climatic influences. Moderate Resolution Imaging Spectroradiometer (MODIS)-based Normalized Dierence Vegetation Index (NDVI) data were used to approximate actual ecosystem performance. Seventeen years (2000â2016) of annual EEP was calculated using piecewise regression tree models of site potential and climate data. Expected biomass (EB), EEP converted to biomass in kg*ha-1*yr-1, was then used to examine the predictive capacity of several drought indices and the onset date of the growing season. Subsets of these indices were used to monitor and predict annual expected grassland biomass. Independent field-based biomass production data available from two Sandhills locations were used for validation of the EEP model. The EB was related to field-based biomass production (R2 = 0.66 and 0.57) and regional rangeland productivity statistics of the Soil Survey Geographic Database (SSURGO) dataset. The Evaporative Stress Index (ESI), the 3- and 6-month Standardized Precipitation Index (SPI), and the U.S. Drought Monitor (USDM), which represented moisture conditions during May, June and July, explained the majority of the interannual biomass variability in this grassland system (three-month ESI explained roughly 72% of the interannual biomass variability). A new model was developed to use drought indices from early in the growing season to predict the total EB for the whole growing season. This unique approach considers only climate-related drought signal on productivity. The capability to estimate annual EB by the end of May will potentially enable land managers to make informed decisions about stocking rates, hay purchase needs, and other management issues early in the season, minimizing their potential drought losses