38 research outputs found

    Continental response to active ridge subduction

    Get PDF
    [1] Apatite fission track ages from a ∼2000 m elevation transect from the Patagonian fold and thrust belt (47.5°S) allow us to quantify the denudational and orographic response of the upper plate to active ridge subduction. Accelerated cooling started at 17 Ma, predating the onset of ridge collision (14–10 Ma), and was followed by reheating between 10 and 6 Ma. Thermal modeling favors reheating on the order of 60°C at ∼28°C/Ma due to east-migration of a slab window after the ridge-trench collision. Final rapid cooling since 4 Ma of ∼18°C/Ma (geothermal gradient of 14°C/km) correlates with the presence of an orographic barrier and >1 km rock uplift in this region between 17.1 and 6.3 Ma. Increased precipitation and erosion since 4 Ma caused asymmetric exhumation, with 3–4 km on the leeside. Repeated crustal unroofing in response to active ridge subduction can explain the positive gravity anomaly south of the Chile Triple Junction

    First evidence for Wollemi Pine-type pollen (Dilwynites: Araucariaceae) in South America

    Get PDF
    We report the first fossil pollen from South America of the lineage that includes the recently discovered, extremely rare Australian Wollemi Pine, Wollemia nobilis (Araucariaceae). The grains are from the late Paleocene to early middle Eocene Ligorio Márquez Formation of Santa Cruz, Patagonia, Argentina, and are assigned to Dilwynites, the fossil pollen type that closely resembles the pollen of modern Wollemia and some species of its Australasian sister genus, Agathis. Dilwynites was formerly known only from Australia, New Zealand, and East Antarctica. The Patagonian Dilwynites occurs with several taxa of Podocarpaceae and a diverse range of cryptogams and angiosperms, but not Nothofagus. The fossils greatly extend the known geographic range of Dilwynites and provide important new evidence for the Antarctic region as an early Paleogene portal for biotic interchange between Australasia and South America.Mike Macphail, Raymond J. Carpenter, Ari Iglesias, Peter Wil

    Constant elevation of southern Tibet over the past 15 million years

    No full text
    The uplift of the Tibetan plateau, an area that is 2,000 km wide, to an altitude of about 5,000 m has been shown to modify global climate1, 2, 3 and to influence monsoon intensity4, 5, 6, 7, 8. Mechanical and thermal models for homogeneous thickening of the lithosphere make specific predictions about uplift rates of the Tibetan plateau9, 10, but the precise history of the uplift of the plateau has yet to be confirmed by observations. Here we present well-preserved fossil leaf assemblages from the Namling basin, southern Tibet, dated to 15 Myr ago, which allow us to reconstruct the temperatures within the basin at that time. Using a numerical general circulation model to estimate moist static energy at the location of the fossil leaves, we reconstruct the elevation of the Namling basin 15 Myr ago to be 4,689 895 m or 4,638 847 m, depending on the reference data used. This is comparable to the present-day altitude of 4,600 m. We conclude that the elevation of the southern Tibetan plateau probably has remained unchanged for the past 15 Myr
    corecore