42 research outputs found

    Characterization of hitherto unknown Valsartan photodegradation impurities

    Get PDF
    A detailed investigation of Valsartan`s light-induced degradation is reported. Based on UPLC-HRMS studies of stressed solutions several degradation pathways are proposed. Some of the proposed structures were obtained by forced degradation experiments. Examination of analytical data including crystal structures allowed for structural revision of one literature-known degradant. In addition, irradiation under aerobic conditions revealed further degradative pathways leading to two previously unknown decomposition products. Mechanistic considerations regarding their origin helped to identify structural weak points of Valsartan under the influence of light

    In situ preparation of a multifunctional chiral hybrid organic-inorganic catalyst for asymmetric multicomponent reactions

    Full text link
    [EN] A chiral mesoporous organosilica material incorporating a urea based-cinchona derivative and propylamine groups was prepared by a co-condensation method. The multisite solid catalyst efficiently promoted the asymmetric multicomponent reaction of aldehydes, malonates and nitromethane.This work was supported by the Spanish Government (Consolider Ingenio 2010-MULTICAT (CSD2009-00050) and MAT2011-29020-C02-01). P.G.-G. is grateful for a JAE-DOC contract from CSIC co-funded by the ESF. The Severo Ochoa program is thankfully acknowledged.GarcĂ­a GarcĂ­a, P.; Zagdoun, A.; Coperet, C.; Lesage, A.; DĂ­az Morales, UM.; Corma CanĂłs, A. (2013). In situ preparation of a multifunctional chiral hybrid organic-inorganic catalyst for asymmetric multicomponent reactions. Chemical Science. 4(5):2006-2012. https://doi.org/10.1039/C3SC22310HS2006201245JosĂ© Climent, M., Corma, A., & Iborra, S. (2012). Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Adv., 2(1), 16-58. doi:10.1039/c1ra00807bCorma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272zCliment, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084RamĂłn, D. J., & Yus, M. (2005). Asymmetric Multicomponent Reactions (AMCRs): The New Frontier. Angewandte Chemie International Edition, 44(11), 1602-1634. doi:10.1002/anie.200460548Guillena, G., RamĂłn, D. J., & Yus, M. (2007). Organocatalytic enantioselective multicomponent reactions (OEMCRs). Tetrahedron: Asymmetry, 18(6), 693-700. doi:10.1016/j.tetasy.2007.03.002Yu, J., Shi, F., & Gong, L.-Z. (2011). BrĂžnsted-Acid-Catalyzed Asymmetric Multicomponent Reactions for the Facile Synthesis of Highly Enantioenriched Structurally Diverse Nitrogenous Heterocycles. Accounts of Chemical Research, 44(11), 1156-1171. doi:10.1021/ar2000343Huang, Y., Walji, A. M., Larsen, C. H., & MacMillan, D. W. C. (2005). Enantioselective Organo-Cascade Catalysis. Journal of the American Chemical Society, 127(43), 15051-15053. doi:10.1021/ja055545dEnders, D., HĂŒttl, M. R. M., Grondal, C., & Raabe, G. (2006). Control of four stereocentres in a triple cascade organocatalytic reaction. Nature, 441(7095), 861-863. doi:10.1038/nature04820Galzerano, P., Pesciaioli, F., Mazzanti, A., Bartoli, G., & Melchiorre, P. (2009). Asymmetric Organocatalytic Cascade Reactions with α-Substituted α,ÎČ-Unsaturated Aldehydes. Angewandte Chemie International Edition, 48(42), 7892-7894. doi:10.1002/anie.200903803Ramachary, D. B., Chowdari, N. S., & Barbas, C. F. (2003). Organocatalytic Asymmetric Domino Knoevenagel/Diels–Alder Reactions: A Bioorganic Approach to the Diastereospecific and Enantioselective Construction of Highly Substituted Spiro[5,5]undecane-1,5,9-triones. Angewandte Chemie International Edition, 42(35), 4233-4237. doi:10.1002/anie.200351916Ramachary, D. B., Anebouselvy, K., Chowdari, N. S., & Barbas, C. F. (2004). Direct Organocatalytic Asymmetric Heterodomino Reactions:  The Knoevenagel/Diels−Alder/Epimerization Sequence for the Highly Diastereoselective Synthesis of Symmetrical and Nonsymmetrical Synthons of Benzoannelated Centropolyquinanes. The Journal of Organic Chemistry, 69(18), 5838-5849. doi:10.1021/jo049581rRamachary, D. B., & Barbas, C. F. (2004). Towards Organo-Click Chemistry: Development of Organocatalytic Multicomponent Reactions Through Combinations of Aldol, Wittig, Knoevenagel, Michael, Diels-Alder and Huisgen Cycloaddition Reactions. Chemistry - A European Journal, 10(21), 5323-5331. doi:10.1002/chem.200400597Evans, C. G., & Gestwicki, J. E. (2009). Enantioselective Organocatalytic Hantzsch Synthesis of Polyhydroquinolines. Organic Letters, 11(14), 2957-2959. doi:10.1021/ol901114fCorma, A., & Garcia, H. (2006). Silica-Bound Homogenous Catalysts as Recoverable and Reusable Catalysts in Organic Synthesis. Advanced Synthesis & Catalysis, 348(12-13), 1391-1412. doi:10.1002/adsc.200606192Liu, X., Wang, P., Yang, Y., Wang, P., & Yang, Q. (2010). (R)-(+)-Binol-Functionalized Mesoporous Organosilica as a Highly Efficient Pre-Chiral Catalyst for Asymmetric Catalysis. Chemistry - An Asian Journal, 5(5), 1232-1239. doi:10.1002/asia.200900737Wang, P., Liu, X., Yang, J., Yang, Y., Zhang, L., Yang, Q., & Li, C. (2009). Chirally functionalized mesoporous organosilicas with built-in BINAP ligand for asymmetric catalysis. Journal of Materials Chemistry, 19(42), 8009. doi:10.1039/b913808kFont, D., Jimeno, C., & PericĂ s, M. A. (2006). Polystyrene-Supported Hydroxyproline:  An Insoluble, Recyclable Organocatalyst for the Asymmetric Aldol Reaction in Water. Organic Letters, 8(20), 4653-4655. doi:10.1021/ol061964jZamboulis, A., Rahier, N. J., Gehringer, M., CattoĂ«n, X., Niel, G., Bied, C., 
 Man, M. W. C. (2009). Silica-supported l-proline organocatalysts for asymmetric aldolisation. Tetrahedron: Asymmetry, 20(24), 2880-2885. doi:10.1016/j.tetasy.2009.11.024Fan, X., Sayalero, S., & PericĂ s, M. A. (2012). Asymmetric α-Amination of Aldehydes Catalyzed by PS-Diphenylprolinol Silyl Ethers: Remediation of Catalyst Deactivation for Continuous Flow Operation. Advanced Synthesis & Catalysis, 354(16), 2971-2976. doi:10.1002/adsc.201200887Wang, C. A., Zhang, Z. K., Yue, T., Sun, Y. L., Wang, L., Wang, W. D., 
 Wang, W. (2012). «Bottom-Up» Embedding of the JĂžrgensen-Hayashi Catalyst into a Chiral Porous Polymer for Highly Efficient Heterogeneous Asymmetric Organocatalysis. Chemistry - A European Journal, 18(22), 6718-6723. doi:10.1002/chem.201200753Riente, P., Yadav, J., & PericĂ s, M. A. (2012). A Click Strategy for the Immobilization of MacMillan Organocatalysts onto Polymers and Magnetic Nanoparticles. Organic Letters, 14(14), 3668-3671. doi:10.1021/ol301515dShi, J. Y., Wang, C. A., Li, Z. J., Wang, Q., Zhang, Y., & Wang, W. (2011). Heterogeneous Organocatalysis at Work: Functionalization of Hollow Periodic Mesoporous Organosilica Spheres with MacMillan Catalyst. Chemistry – A European Journal, 17(22), 6206-6213. doi:10.1002/chem.201100072Bleschke, C., Schmidt, J., Kundu, D. S., Blechert, S., & Thomas, A. (2011). A Chiral Microporous Polymer Network as Asymmetric Heterogeneous Organocatalyst. Advanced Synthesis & Catalysis, 353(17), 3101-3106. doi:10.1002/adsc.201100674Rueping, M., Sugiono, E., Steck, A., & Theissmann, T. (2010). Synthesis and Application of Polymer-Supported Chiral BrĂžnsted Acid Organocatalysts. Advanced Synthesis & Catalysis, 352(2-3), 281-287. doi:10.1002/adsc.200900746Kasaplar, P., Riente, P., Hartmann, C., & PericĂ s, M. A. (2012). A Polystyrene-Supported, Highly Recyclable Squaramide Organocatalyst for the Enantioselective Michael Addition of 1,3-Dicarbonyl Compounds to ÎČ-Nitrostyrenes. Advanced Synthesis & Catalysis, 354(16), 2905-2910. doi:10.1002/adsc.201200526Wang, W., Ma, X., Wan, J., Cao, J., & Tang, Q. (2012). Preparation and confinement effect of a heterogeneous 9-amino-9-deoxy-epi-cinchonidine organocatalyst for asymmetric aldol addition in aqueous medium. Dalton Transactions, 41(18), 5715. doi:10.1039/c2dt12390hCancogni, D., Mandoli, A., Jumde, R. P., & Pini, D. (2012). Silicone-Supported Cinchona Alkaloid Derivatives as Insoluble Organocatalysts in the Enantioselective Dimerization of Ketenes. European Journal of Organic Chemistry, 2012(7), 1336-1345. doi:10.1002/ejoc.201101320Jumde, R. P., Mandoli, A., De Lorenzi, F., Pini, D., & Salvadori, P. (2010). Simple Preparation of Dimeric Cinchona Alkaloid Derivatives on Polystyrene Supports and a Highly Enantioselective Catalytic Heterogeneous Dimerization of Ketenes. Advanced Synthesis & Catalysis, 352(9), 1434-1440. doi:10.1002/adsc.201000165Youk, S. H., Oh, S. H., Rho, H. S., Lee, J. E., Lee, J. W., & Song, C. E. (2009). A polymer-supported Cinchona-based bifunctional sulfonamide catalyst: a highly enantioselective, recyclable heterogeneous organocatalyst. Chemical Communications, (16), 2220. doi:10.1039/b821483bConnon, S. J. (2006). Organocatalysis Mediated by (Thio)urea Derivatives. Chemistry - A European Journal, 12(21), 5418-5427. doi:10.1002/chem.200501076Siau, W.-Y., & Wang, J. (2011). Asymmetric organocatalytic reactions by bifunctional amine-thioureas. Catalysis Science & Technology, 1(8), 1298. doi:10.1039/c1cy00271fMiyabe, H., & Takemoto, Y. (2008). Discovery and Application of Asymmetric Reaction by Multi-Functional Thioureas. Bulletin of the Chemical Society of Japan, 81(7), 785-795. doi:10.1246/bcsj.81.785Yu, P., He, J., & Guo, C. (2008). 9-Thiourea Cinchona alkaloid supported on mesoporous silica as a highly enantioselective, recyclable heterogeneous asymmetric catalyst. Chemical Communications, (20), 2355. doi:10.1039/b800640gGleeson, O., Davies, G.-L., Peschiulli, A., Tekoriute, R., Gun’ko, Y. K., & Connon, S. J. (2011). The immobilisation of chiral organocatalysts on magnetic nanoparticles: the support particle cannot always be considered inert. Organic & Biomolecular Chemistry, 9(22), 7929. doi:10.1039/c1ob06110kVakulya, B., Varga, S., CsĂĄmpai, A., & SoĂłs, T. (2005). Highly Enantioselective Conjugate Addition of Nitromethane to Chalcones Using Bifunctional Cinchona Organocatalysts. Organic Letters, 7(10), 1967-1969. doi:10.1021/ol050431sChen, W., Du, W., Duan, Y.-Z., Wu, Y., Yang, S.-Y., & Chen, Y.-C. (2007). Enantioselective 1,3-Dipolar Cycloaddition of Cyclic Enones Catalyzed by Multifunctional Primary Amines: Beneficial Effects of Hydrogen Bonding. Angewandte Chemie International Edition, 46(40), 7667-7670. doi:10.1002/anie.200702618DĂ­az, U., GarcĂ­a, T., Velty, A., & Corma, A. (2009). Hybrid organic–inorganic catalytic porous materials synthesized at neutral pH in absence of structural directing agents. Journal of Materials Chemistry, 19(33), 5970. doi:10.1039/b906821jLakshmi Kantam, M., & Sreekanth, P. (1999). Catalysis Letters, 57(4), 227-231. doi:10.1023/a:1019012019131Sartori, G. (2004). Catalytic activity of aminopropyl xerogels in the selective synthesis of (E)-nitrostyrenes from nitroalkanes and aromatic aldehydes. Journal of Catalysis, 222(2), 410-418. doi:10.1016/j.jcat.2003.11.016Wang, Q., & Shantz, D. F. (2010). Nitroaldol reactions catalyzed by amine-MCM-41 hybrids. Journal of Catalysis, 271(2), 170-177. doi:10.1016/j.jcat.2010.01.010Motokura, K., Tada, M., & Iwasawa, Y. (2008). Cooperative Catalysis of Primary and Tertiary Amines Immobilized on Oxide Surfaces for One-Pot CC Bond Forming Reactions. Angewandte Chemie International Edition, 47(48), 9230-9235. doi:10.1002/anie.200802515SOLDI, L., FERSTL, W., LOEBBECKE, S., MAGGI, R., MALMASSARI, C., SARTORI, G., & YADA, S. (2008). Use of immobilized organic base catalysts for continuous-flow fine chemical synthesis. Journal of Catalysis, 258(2), 289-295. doi:10.1016/j.jcat.2008.07.005Ye, J., Dixon, D. J., & Hynes, P. S. (2005). Enantioselective organocatalytic Michael addition of malonate esters to nitro olefins using bifunctional cinchonine derivatives. Chemical Communications, (35), 4481. doi:10.1039/b508833jMcCooey, S. H., & Connon, S. J. (2005). Urea- and Thiourea-Substituted Cinchona Alkaloid Derivatives as Highly Efficient Bifunctional Organocatalysts for the Asymmetric Addition of Malonate to Nitroalkenes: Inversion of Configuration at C9 Dramatically Improves Catalyst Performance. Angewandte Chemie International Edition, 44(39), 6367-6370. doi:10.1002/anie.200501721Hynes, P. S., Stupple, P. A., & Dixon, D. J. (2008). Organocatalytic Asymmetric Total Synthesis of (R)-Rolipram and Formal Synthesis of (3S,4R)-Paroxetine. Organic Letters, 10(7), 1389-1391. doi:10.1021/ol800108uOkino, T., Hoashi, Y., Furukawa, T., Xu, X., & Takemoto, Y. (2005). Enantio- and Diastereoselective Michael Reaction of 1,3-Dicarbonyl Compounds to Nitroolefins Catalyzed by a Bifunctional Thiourea. Journal of the American Chemical Society, 127(1), 119-125. doi:10.1021/ja044370pXu, F., Corley, E., Zacuto, M., Conlon, D. A., Pipik, B., Humphrey, G., 
 Tschaen, D. (2010). Asymmetric Synthesis of a Potent, Aminopiperidine-Fused Imidazopyridine Dipeptidyl Peptidase IV Inhibitor. The Journal of Organic Chemistry, 75(5), 1343-1353. doi:10.1021/jo902573qLiu, J., Wang, X., Ge, Z., Sun, Q., Cheng, T., & Li, R. (2011). Solvent-free organocatalytic Michael addition of diethyl malonate to nitroalkenes: the practical synthesis of Pregabalin and Îł-nitrobutyric acid derivatives. Tetrahedron, 67(3), 636-640. doi:10.1016/j.tet.2010.11.053Elsner, P., Jiang, H., Nielsen, J. B., Pasi, F., & JĂžrgensen, K. A. (2008). A modular and organocatalytic approach to Îł-butyrolactone autoregulators from Streptomycetes. Chemical Communications, (44), 5827. doi:10.1039/b812698dPoe, S. L., KobaĆĄlija, M., & McQuade, D. T. (2006). Microcapsule Enabled Multicatalyst System. Journal of the American Chemical Society, 128(49), 15586-15587. doi:10.1021/ja066476lPoe, S. L., KobaĆĄlija, M., & McQuade, D. T. (2007). Mechanism and Application of a Microcapsule Enabled Multicatalyst Reaction. Journal of the American Chemical Society, 129(29), 9216-9221. doi:10.1021/ja071706

    Development of polymerizable BINOL derivatives for the creation of immobilized chiral BrĂžnsted acids and ligands - Application in asymmetric catalysis

    No full text
    Im ersten Teil dieser Arbeit wurde die Entwicklung chiraler, katalytisch aktiver Polymere mit intrinsischer MikroporositĂ€t vorgestellt. ZunĂ€chst wurden verschiedene enantiomerenreine BINOL-Derivate mit polymerisierbaren Substituenten synthetisiert. Nachfolgend erwies sich die oxidative Kupplung von Thiophenen als geeignete Polymerisationsmethode. Sie tolerierte alle benötigten funktionellen Gruppen und ermöglichte die Darstellung von Polymeren und Copolymeren aus Thienyl-substituierten Monomeren. Die hergestellten Feststoffe wiesen intrinsische MikroporositĂ€t und hohe spezifische OberflĂ€chen von bis zu 1247 m2 g-1 auf. PhosphorsĂ€ure-funktionalisierte Monomere und Polymere konnten anschließend erfolgreich als Organokatalysatoren in der enantioselektiven Transferhydrierung von Stickstoffhetero-cyclen eingesetzt werden. Strukturen, mit geringem Abstand zwischen den polymerisierbaren Gruppen und dem katalytisch aktiven Zentrum, zeigten nach der Polymerisation eine erhöhte EnantioselektivitĂ€t von bis zu 60 % ee im Vergleich zu den entsprechenden monomeren Katalysatoren mit maximal 34 % ee. Demnach fĂŒhrte die Polymerisation sowohl zur Immobilisierung als auch zur Verbesserung der EnantioselektivitĂ€t der monomeren Katalysatoren. Erste Untersuchungen zeigten, dass die heterogenen Katalysatoren einfach separiert und wiederverwendet werden können. Die Ergebnisse reprĂ€sentieren die ersten Beispiele fĂŒr eine enantioselektive Organokatalyse mit mikroporösen organischen Polymeren. Im zweiten Teil dieser Arbeit wurde ein polymerisierbarer Octahydro-BINOL-Ligand hergestellt. Der Ligand ist den Monoalkoxy-Liganden in den neusten Schrock-Metathese-Katalysatoren nachempfunden und soll als Grundlage fĂŒr Untersuchungen zur Immobilisierung dieser Katalysatoren dienen. Als polymerisierbare Gruppe wurde eine Norborneneinheit gewĂ€hlt, die mit der Silylschutzgruppe im Liganden verknĂŒpft wurde. Die StabilitĂ€t der Schutzgruppe wurde durch die Variation der ĂŒbrigen Alkylsubstituenten am Silizium optimiert. Das entsprechende Silylchlorid wurde ĂŒber eine Hydrosilylierung als SchlĂŒsselschritt hergestellt und erfolgreich mit 3,3‘-Dibrom-Octahydro-BINOL umgesetzt. Die flexible Syntheseroute ermöglicht zudem einen einfachen Zugang zu weiteren Liganden mit unterschiedlicher Halogensubstitution, die im Rahmen dieser Arbeit nicht mehr hergestellt wurden.In the first part of this thesis chiral catalytically active polymers with intrinsic microporosity were presented. First, different enantiomerically pure BINOL derivatives were synthesized. Afterwards the oxidative coupling of thiophenes turned out to be an appropriate polymerization method. All required functional groups were tolerated and the creation of polymers and copolymers out of thienyl substituted monomers was possible. The produced solids were intrinsic microporous and showed specific surface areas of up to 1247 m2 g-1. Then Phosphoric acid functionalized monomers and polymers could be successfully used as organocatalysts in the enantioselective transfer hydrogenation of nitrogen heterocycles. Structures with little space between polymerizable groups and the catalytically active centre showed after polymerization increased enantioselectivity of up to 60 % ee in comparison to the corresponding monomeric catalyst with maximum 34 % ee. Thus polymerization led to immobilization as well as enhancement of enantioselectivity of the monomeric catalyst. First experiments showed that the heterogeneous catalysts can easily be separated and reused. These results represent the first examples of enantioselective organocatalysis with microporous organic polymers. In the second part of this thesis a polymerizable octahydro-BINOL ligand was presented. The ligand is patterned on the monoalkoxy ligand in the latest Schrock metathesis catalysts and should serve as a basis for investigation of the immobilization of these catalysts. A norbornene group was chosen as polymerizable group and was connected to a silyl protecting group. The stability of the protecting group was optimized by variation of the alkyl substituents on the silicon atom. The corresponding silyl chloride was synthesized via hydrosilylation as a key step and was then successfully reacted with 3,3‘-Dibrom-Octahydro-BINOL. Furthermore the flexible synthesis enables an easy access to further ligands with different halide substituents. This has not been accomplished anymore within this thesis

    Direct Trapping of Sterically Encumbered Aluminum Enolates

    No full text
    The formation of chiral and sterically congested cyclohexanone derivatives has been achieved through a multistep sequence with one single purification step. (n-Butoxymethyl)-diethylamine was identified as a highly efficient reagent for the direct trapping of aluminum enolates. The Lewis acidic character of aluminum suffices to activate the α-aminoether to form in situ an electrophilic iminium species. In return the aluminum enolate is rendered more nucleophilic by coordination of the butoxy group and formation of an aluminate

    Catalytic Enantioselective Total Synthesis of Riccardiphenol B

    No full text
    The first catalytic enantioselective total synthesis of riccardiphenol B, a sesquiterpene derivative isolated from a Japanese collection of the liverwort Riccardia crassa, has been achieved. A copper-catalyzed asymmetric conjugate addition of trimethylaluminum was used at an early stage to generate the quaternary stereogenic center with high enantiomeric excess. The corresponding sterically encumbered aluminum enolate was directly trapped with an α-amino ether, allowing after oxidation, the release of a key intermediate in the total synthesis of the target natural product

    Direct Trapping of Sterically Encumbered Aluminum Enolates

    No full text
    The formation of chiral and sterically congested cyclohexanone derivatives has been achieved through a multistep sequence with one single purification step. (<i>n</i>-Butoxymethyl)-diethylamine was identified as a highly efficient reagent for the direct trapping of aluminum enolates. The Lewis acidic character of aluminum suffices to activate the α-aminoether to form <i>in situ</i> an electrophilic iminium species. In return the aluminum enolate is rendered more nucleophilic by coordination of the butoxy group and formation of an aluminate
    corecore