130 research outputs found

    Mitochondrial Replication from Embryogenesis to Early Adulthood, in DUI Species, Mytilus Galloprovincialis

    Get PDF
    Eukaryotes typically inherit mitochondria strictly maternally. There are however a group of bivalve molluscs that inherit different mitochondrial genomes from each parent. The paternally inherited mtDNA (M-type) is localized to, and dominates over the maternally inherited mtDNA (F-type) in the gonads of the male offspring, but is not normally retained in any tissue of the female offspring. This process is termed Double Uniparental Inheritance (DUI). Using quantitative PCR (qPCR), this study examines mtDNA replication compared to total DNA replication through embryonic stages of development and into early adulthood of the DUI species, Mytilus galloprovincialis. Results indicate that up through the early veliger stage of development, there is little replication of mtDNA. Between the early veliger and pediveliger stages, mtDNA replication increases dramatically, and then continues to replicate between pediveliger and 1mm spat. Rate of mtDNA replication slows after the pediveliger stage. This study also shows that mtDNA replication is not coupled to nuclear DNA replication, and that though replication of mtDNA increases between early veliger and pediveliger stages, nuclear DNA is replicating at a faster rate

    The roles of poly(ADP-ribose)-metabolizing enzymes in alkylation-induced cell death

    Get PDF
    Abstract.: Poly(ADP-ribose) (PAR) has been identified as a DNA damage-inducible cell death signal upstream of apoptosis-inducing factor (AIF). PAR causes the translocation of AIF from mitochondria to the nucleus and triggers cell death. In living cells, PAR molecules are subject to dynamic changes pending on internal and external stress factors. Using RNA interference (RNAi), we determined the roles of poly(ADP-ribose) polymerases-1 and -2 (PARP-1, PARP-2) and poly(ADP-ribose) glycohydrolase (PARG), the key enzymes configuring PAR molecules, in cell death induced by an alkylating agent. We found that PARP-1, but not PARP-2 and PARG, contributed to alkylation-induced cell death. Likewise, AIF translocation was only affected by PARP-1. PARP-1 seems to play a major role configuring PAR as a death signal involving AIF translocation regardless of the death pathway involve

    Poly(ADP-ribose)glycohydrolase is an upstream regulator of Ca2+ fluxes in oxidative cell death

    Get PDF
    Oxidative DNA damage to cells activates poly(ADP-ribose)polymerase-1 (PARP-1) and the poly(ADP-ribose) formed is rapidly degraded to ADP-ribose by poly(ADP-ribose)glycohydrolase (PARG). Here we show that PARP-1 and PARG control extracellular Ca2+ fluxes through melastatin-like transient receptor potential 2 channels (TRPM2) in a cell death signaling pathway. TRPM2 activation accounts for essentially the entire Ca2+ influx into the cytosol, activating caspases and causing the translocation of apoptosis inducing factor (AIF) from the inner mitochondrial membrane to the nucleus followed by cell death. Abrogation of PARP-1 or PARG function disrupts these signals and reduces cell death. ADP-ribose-loading of cells induces Ca2+ fluxes in the absence of oxidative damage, suggesting that ADP-ribose is the key metabolite of the PARP-1/PARG system regulating TRPM2. We conclude that PARP-1/PARG control a cell death signal pathway that operates between five different cell compartments and communicates via three types of chemical messengers: a nucleotide, a cation, and protein

    Egg Laying of Cabbage White Butterfly (Pieris brassicae) on Arabidopsis thaliana Affects Subsequent Performance of the Larvae

    Get PDF
    Plant resistance to the feeding by herbivorous insects has recently been found to be positively or negatively influenced by prior egg deposition. Here we show how crucial it is to conduct experiments on plant responses to herbivory under conditions that simulate natural insect behaviour. We used a well- studied plant – herbivore system, Arabidopsis thaliana and the cabbage white butterfly Pieris brassicae, testing the effects of naturally laid eggs (rather than egg extracts) and allowing larvae to feed gregariously as they do naturally (rather than placing single larvae on plants). Under natural conditions, newly hatched larvae start feeding on their egg shells before they consume leaf tissue, but access to egg shells had no effect on subsequent larval performance in our experiments. However, young larvae feeding gregariously on leaves previously laden with eggs caused less feeding damage, gained less weight during the first 2 days, and suffered twice as high a mortality until pupation compared to larvae feeding on plants that had never had eggs. The concentration of the major anti-herbivore defences of A. thaliana, the glucosinolates, was not significantly increased by oviposition, but the amount of the most abundant member of this class, 4-methylsulfinylbutyl glucosinolate was 1.8-fold lower in larval-damaged leaves with prior egg deposition compared to damaged leaves that had never had eggs. There were also few significant changes in the transcript levels of glucosinolate metabolic genes, except that egg deposition suppressed the feeding-induced up-regulation of FMOGS-OX2, a gene encoding a flavin monooxygenase involved in the last step of 4-methylsulfinylbutyl glucosinolate biosynthesis. Hence, our study demonstrates that oviposition does increase A. thaliana resistance to feeding by subsequently hatching larvae, but this cannot be attributed simply to changes in glucosinolate content

    The roles of poly(ADP-ribose)-metabolizing enzymes in alkylation-induced cell death

    Full text link
    Poly(ADP-ribose) (PAR) has been identified as a DNA damage-inducible cell death signal upstream of apoptosis-inducing factor (AIF). PAR causes the translocation of AIF from mitochondria to the nucleus and triggers cell death. In living cells, PAR molecules are subject to dynamic changes pending on internal and external stress factors. Using RNA interference (RNAi), we determined the roles of poly(ADP-ribose) polymerases-1 and -2 (PARP-1, PARP-2) and poly(ADP-ribose) glycohydrolase (PARG), the key enzymes configuring PAR molecules, in cell death induced by an alkylating agent. We found that PARP-1, but not PARP-2 and PARG, contributed to alkylation-induced cell death. Likewise, AIF translocation was only affected by PARP-1. PARP-1 seems to play a major role configuring PAR as a death signal involving AIF translocation regardless of the death pathway involved

    Water Filtered Infrared A and Visible Light (wIRA/VIS) Irradiation Reduces Chlamydia trachomatis Infectivity Independent of Targeted Cytokine Inhibition

    Get PDF
    Chlamydia trachomatis is the major cause of infectious blindness and represents the most common bacterial sexually transmitted infection worldwide. Considering the potential side effects of antibiotic therapy and increasing threat of antibiotic resistance, alternative therapeutic strategies are needed. Previous studies showed that water filtered infrared A alone (wIRA) or in combination with visible light (wIRA/VIS) reduced C. trachomatis infectivity. Furthermore, wIRA/VIS irradiation led to secretion of pro-inflammatory cytokines similar to that observed upon C. trachomatis infection. We confirmed the results of previous studies, namely that cytokine secretion (IL-6, IL-8, and RANTES/CCL5) upon wIRA/VIS treatment, and the subsequent reduction of chlamydial infectivity, are independent of the addition of cycloheximide, a host protein synthesis inhibitor. Reproducible cytokine release upon irradiation indicated that cytokines might be involved in the anti-chlamydial mechanism of wIRA/VIS. This hypothesis was tested by inhibiting IL-6, IL-8, and RANTES secretion in C. trachomatis or mock-infected cells by gene silencing or pharmaceutical inhibition. Celastrol, a substance derived from Trypterygium wilfordii, used in traditional Chinese medicine and known for anti-cancer and anti-inflammatory effects, was used for IL-6 and IL-8 inhibition, while Maraviroc, a competitive CCR5 antagonist and anti-HIV drug, served as a RANTES/CCL5 inhibitor. HeLa cell cytotoxicity and impact on chlamydial morphology, size and inclusion number was evaluated upon increasing inhibitor concentration, and concentrations of 0.1 and 1 μM Celastrol and 10 and 20 μM Maraviroc were subsequently selected for irradiation experiments. Celastrol at any concentration reduced chlamydial infectivity, an effect only observed for 20 μM Maraviroc. Triple dose irradiation (24, 36, 40 hpi) significantly reduced chlamydial infectivity regardless of IL-6, IL-8, or RANTES/CCL5 gene silencing, Celastrol or Maraviroc treatment. Neither gene silencing nor pharmaceutical cytokine inhibition provoked the chlamydial stress response. The anti-chlamydial effect of wIRA/VIS is independent of cytokine inhibition under all conditions evaluated. Thus, factors other than host cell cytokines must be involved in the working mechanism of wIRA/VIS. This study gives a first insight into the working mechanism of wIRA/VIS in relation to an integral component of the host immune system and supports the potential of wIRA/VIS as a promising new tool for treatment in trachoma
    • …
    corecore