17 research outputs found

    Postprandial Oxidative Stress in Exercise Trained and Sedentary Cigarette Smokers

    Get PDF
    Cigarette smokers experience an exaggerated triglyceride (TAG) and oxidative stress response to high fat feeding. Exercise training may serve to attenuate the rise in these variables, by improving TAG clearance and antioxidant defense. We compared blood TAG, antioxidant capacity, and oxidative stress biomarkers in exercise trained (>2 hrs per wk) and untrained smokers matched for age, in response to a high fat test meal. We report here that low volume exercise training can attenuate postprandial lipid peroxidation, but has little impact on blood TAG and other markers of oxidative stress. Higher volumes of exercise may be needed to allow for clinically meaningful adaptations in postprandial lipemia and oxidative stress

    Acute ingestion of a novel whey-derived peptide improves vascular endothelial responses in healthy individuals: a randomized, placebo controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Whey protein is a potential source of bioactive peptides. Based on findings from <it>in vitro </it>experiments indicating a novel whey derived peptide (NOP-47) increased endothelial nitric oxide synthesis, we tested its effects on vascular function in humans.</p> <p>Methods</p> <p>A randomized, placebo-controlled, crossover study design was used. Healthy men (n = 10) and women (n = 10) (25 ± 5 y, BMI = 24.3 ± 2.3 kg/m<sup>2</sup>) participated in two vascular testing days each preceded by 2 wk of supplementation with a single dose of 5 g/day of a novel whey-derived peptide (NOP-47) or placebo. There was a 2 wk washout period between trials. After 2 wk of supplementation, vascular function in the forearm and circulating oxidative stress and inflammatory related biomarkers were measured serially for 2 h after ingestion of 5 g of NOP-47 or placebo. Macrovascular and microvascular function were assessed using brachial artery flow mediated dilation (FMD) and venous occlusion strain gauge plethysmography.</p> <p>Results</p> <p>Baseline peak FMD was not different for Placebo (7.7%) and NOP-47 (7.8%). Placebo had no effect on FMD at 30, 60, and 90 min post-ingestion (7.5%, 7.2%, and 7.6%, respectively) whereas NOP-47 significantly improved FMD responses at these respective postprandial time points compared to baseline (8.9%, 9.9%, and 9.0%; <it>P </it>< 0.0001 for time × trial interaction). Baseline reactive hyperemia forearm blood flow was not different for placebo (27.2 ± 7.2%/min) and NOP-47 (27.3 ± 7.6%/min). Hyperemia blood flow measured 120 min post-ingestion (27.2 ± 7.8%/min) was unaffected by placebo whereas NOP-47 significantly increased hyperemia compared to baseline (29.9 ± 7.8%/min; <it>P </it>= 0.008 for time × trial interaction). Plasma myeloperoxidase was increased transiently by both NOP-47 and placebo, but there were no changes in markers inflammation. Plasma total nitrites/nitrates significantly decreased over the 2 hr post-ingestion period and were lower at 120 min after placebo (-25%) compared to NOP-47 (-18%).</p> <p>Conclusion</p> <p>These findings indicate that supplementation with a novel whey-derived peptide in healthy individuals improves vascular function.</p

    Metabolic syndrome: definitions and controversies

    Get PDF
    Metabolic syndrome (MetS) is a complex disorder defined by a cluster of interconnected factors that increase the risk of cardiovascular atherosclerotic diseases and diabetes mellitus type 2. Currently, several different definitions of MetS exist, causing substantial confusion as to whether they identify the same individuals or represent a surrogate of risk factors. Recently, a number of other factors besides those traditionally used to define MetS that are also linked to the syndrome have been identified. In this review, we critically consider existing definitions and evolving information, and conclude that there is still a need to develop uniform criteria to define MetS, so as to enable comparisons between different studies and to better identify patients at risk. As the application of the MetS model has not been fully validated in children and adolescents as yet, and because of its alarmingly increasing prevalence in this population, we suggest that diagnosis, prevention and treatment in this age group should better focus on established risk factors rather than the diagnosis of MetS

    Vascular and Inflammatory High Fat Meal Responses in Young Healthy Men; A Discriminative Role of IL-8 Observed in a Randomized Trial

    Get PDF
    Background: High fat meal challenges are known to induce postprandial low-grade inflammation and endothelial dysfunction. This assumption is largely based on studies performed in older populations or in populations with a progressed disease state and an appropriate control meal is often lacking. Young healthy individuals might be more resilient to such challenges. We therefore aimed to characterize the vascular and inflammatory response after a high fat meal in young healthy individuals. Methods: In a double-blind randomized cross-over intervention study, we used a comprehensive phenotyping approach to determine the vascular and inflammatory response after consumption of a high fat shake and after an average breakfast shake in 20 young healthy subjects. Both interventions were performed three times. Results: Many features of the vascular postprandial response, such as FMD, arterial stiffness and micro-vascular skin blood flow were not different between shakes. High fat/high energy shake consumption was associated with a more pronounced increase in blood pressure, heart rate, plasma concentrations of IL-8 and PBMCs gene expression of IL-8 and CD54 (ICAM-1), whereas plasma concentrations of sVCAM1 were decreased compared to an average breakfast. Conclusion: Whereas no difference in postprandial response were observed on classical markers of endothelial function, we did observe differences between consumption of a HF/HE and an average breakfast meal on blood pressure and IL-8 in young healthy volunteers. IL-8 might play an important role in dealing with high fat challenges and might be an early marker for endothelial stress, a stage preceding endothelial dysfunction. Trial Registration: ClinicalTrials.gov NCT00766623

    Early recognition of heart failure in patients with diabetes type 2 in primary care. A prospective diagnostic efficiency study. (UHFO-DM2)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We hypothesize that the prevalence of unknown heart failure in diabetic patients aged 60 years and over is relatively high (15% or more) and that a cost-effective strategy can be developed to detect heart failure in these patients. The strategy is expected to include some signs and symptoms (such as dyspnoea, orthopnoea, pulmonary crepitations and laterally displaced apical beat), natriuretic peptide measurements (Amino-terminal B-type natriuretic peptide) and possibly electrocardiography. In a subset of patients straightforward echocardiography may show to be cost-effective. With information from our study the detection of previously unknown heart failure in diabetic patients could be improved and enable the physician to initiate beneficial morbidity and mortality reducing heart failure treatment more timely.</p> <p>Primary objectives</p> <p>- To assess the prevalence of (previously unrecognised) heart failure in primary care patients with diabetes type 2.</p> <p>- To establish the most cost-effective diagnostic strategy to detect unrecognised heart failure in these patients.</p> <p>Secondary objectives</p> <p>- To assess the impact of heart failure, and the combination of a new diagnosis with accordingly treatment in patients with diabetes type 2 on health status.</p> <p>Methods/Design</p> <p>Design: A prospective diagnostic efficiency study.</p> <p>Patient population: Patients aged 60 years and older with diabetes type 2 from primary care, enlisted with the diabetes service of the Diagnostic Center in Etten-Leur (SHL)</p> <p>All participants will be investigated at the cardiology out-patient department of the regional hospital (Oosterschelde Hospital in Goes, Zeeland, the Netherlands) during a single 1.5 hour standardised diagnostic assessment, including history taking, physical examination, electrocardiography, echocardiography, blood tests, and Health status questionnaires. Patients will be asked if we can contact them afterwards for follow-up and for repeating the questionnaires after three and 12 months.</p> <p>Main study parameters/endpoints: Prevalence (with exact 95% confidence intervals) of (previously unrecognised) heart failure (systolic and 'isolated' diastolic) and the diagnostic value of signs and symptoms, NT-proBNP, electrocardiography and a combination of these items. The cost-effectiveness of different diagnostic strategies. Impact of heart failure and the combination of a new diagnosis with accordingly treatment on health status.</p> <p>Trial registration</p> <p>CCMO register NL2271704108</p
    corecore