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Abstract

Background: High fat meal challenges are known to induce postprandial low-grade inflammation and endothelial
dysfunction. This assumption is largely based on studies performed in older populations or in populations with a progressed
disease state and an appropriate control meal is often lacking. Young healthy individuals might be more resilient to such
challenges. We therefore aimed to characterize the vascular and inflammatory response after a high fat meal in young
healthy individuals.

Methods: In a double-blind randomized cross-over intervention study, we used a comprehensive phenotyping approach to
determine the vascular and inflammatory response after consumption of a high fat shake and after an average breakfast
shake in 20 young healthy subjects. Both interventions were performed three times.

Results: Many features of the vascular postprandial response, such as FMD, arterial stiffness and micro-vascular skin blood
flow were not different between shakes. High fat/high energy shake consumption was associated with a more pronounced
increase in blood pressure, heart rate, plasma concentrations of IL-8 and PBMCs gene expression of IL-8 and CD54 (ICAM-1),
whereas plasma concentrations of sVCAM1 were decreased compared to an average breakfast.

Conclusion: Whereas no difference in postprandial response were observed on classical markers of endothelial function, we
did observe differences between consumption of a HF/HE and an average breakfast meal on blood pressure and IL-8 in
young healthy volunteers. IL-8 might play an important role in dealing with high fat challenges and might be an early
marker for endothelial stress, a stage preceding endothelial dysfunction.
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Introduction

A lifestyle factor known to be important in development and

progression of cardiovascular disease (CVD) is diet. Although

several dietary components and patterns have been related to

vascular function, the postprandial response has gained specific

attention since it has been associated with an impaired vascular

function, low grade inflammation and increased cardiovascular

risk [1,2,3]. Postprandial effects on vascular function and

inflammation are reversible and temporally, but can be of

importance since most individuals are in the postprandial state

the greater part of the day [4,5,6,7,8]. Most studies that

investigated the postprandial vascular response used flow mediated

dilatation (FMD) as measure of vascular function. Vascular

function can also be assessed by other measures, of which some

have been applied in postprandial studies [9,10,11,12]. Postpran-

dial challenges often used in relation to CVD are high fat (HF)

meals, as these atherogenic meals provide a direct source of stress

[13]. However, many previous studies only investigated a small

part of the postprandial response or were performed in older

individuals or in populations with a progressed disease state, such

as diabetes, metabolic syndrome, hypertension or cardiovascular

disease. The postprandial impact of high fat/high energy (HF/

HE) meals on both vascular function and inflammation in healthy

young subjects has been less well studied. In addition, many

postprandial studies compared HF/HE meals with water con-

sumption, with other macronutrients or only with baseline

recordings. In these studies the question remains whether observed

postprandial changes are due to the high fat content itself, to a

common meal effect, or to circadian rhythm influences. Hence, it
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is not completely clear whether the HF/HE meal-induced changes

in vascular function and inflammation are solely caused by the HF

content or by the meal itself and whether this temporary

impairment is also elicited in younger healthy individuals. To

address these points, we examined the postprandial response after

a HF/HE shake in young healthy men on several measures of

vascular function and blood markers of endothelial function and

inflammation, and compared this response with an average

breakfast milkshake. Since most functional measures of vascular

function are known to have large variations in reproducibility, the

effects of both shakes were studied three times within the same

individual.

Methods

The protocol for this trial and CONSORT checklist are

available as supporting information (Protocol S1 and Checklist

S1).

Ethics Statement
All subjects gave written informed consent and the study was

approved by the Medical Ethics Committee of Wageningen. The

study was conducted according to the principles of the Declaration

of Helsinki and in accordance with the Medical Research

Involving Human Subjects Act (WMO) and registered at

ClinicalTrials.gov (Identifier: NCT00766623).

Subjects
Twenty healthy male volunteers of Western European descent,

between 18 and 27 years, were recruited. Exclusion criteria were a

body mass index (BMI) ,18 or .28 kg/m2, urine glucose

concentrations .0,25 g/l, fasting blood glucose ,3 or

.5.5 mmol/L or blood Hb values ,8.4 mmol/L and smoking.

Furthermore, subjects were excluded if they were diagnosed with

any long-term medical condition or high blood pressure (systolic

BP. 140 mmHg and/or diastolic BP.90 mmHg).

Study design
The study was a double-blind randomized cross-over interven-

tion study in which participants visited the university six times in

total; three times to obtain postprandial responses on a HF/HE

shake and three times to obtain postprandial responses on an

average breakfast shake. The latter was used to acquire a common

postprandial response and shakes were therefore not isocaloric. A

one-week washout period was the minimum between consecutive

study days. Shakes were assigned alternately over the study days

and order of start was randomly assigned. A research assistant

Figure 1. CONSORT flow diagram.
doi:10.1371/journal.pone.0053474.g001

Table 1. Subject characteristics.

Mean ± SD (n = 20)

Age (yrs) 2262

Length (cm) 18567

Weight (kg) 78610

BMI (kg/m2) 22.762.4

Glucose (mmol/L) 4.960.3

TAG (mmol/L) 1.160.3

FFA (mmol/L) 0.5260.18

Insulin (uIU/ml) 6.9463.22

Systolic BP (mmHg) 11169

Diastolic BP (mmHg) 5966

Values are expressed as mean 6 SD. Triglycerides (TAG), free fatty acids (FFA),
blood pressure (BP).
doi:10.1371/journal.pone.0053474.t001
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Table 2. Baseline and postprandial concentrations of metabolic plasma parameters after high fat/high energy (HF/HE) or average
breakfast control shake consumption.

Shake Time P-value

Baseline 1h 2h 3h 4h 6h Shake Time Interaction Shake*Time

TAG HF/HE 1.060.2 1.160.2 1.560.3 1.760.3 2.060.4 1.560.3 ,0.001 ,0.001 ,0.001

(mmol/L) Control 1.060.2 1.060.2 1.160.2 1.060.2 1.160.2 0.960.2

Glucose HF/HE 4.260.4 4.060.4 3.860.3 4.060.2 4.160.3 3.960.3 0.892 ,0.001 0.019

(mmol/L) Control 4.260.3 4.160.6 3.660.4 4.060.2 4.060.3 4.060.3

FFA HF/HE 0.5060.15 0.3260.10 0.3460.06 0.5560.09 0.6760.07 0.7660.10 ,0.001 ,0.001 ,0.001

(mmol/L) Control 0.5160.17 0.1560.05 0.1760.04 0.3260.09 0.5360.10 0.7860.14

Insulin HF/HE 6.961.8 20.0611.5 10.262.9 7.162.5 8.262.9 4.861.4 ,0.001 ,0.001 ,0.001

(uIU/ml) Control 7.062.3 43.3617.0 10.967.6 5.661.8 4.461.4 3.361.1

Values are pooled mean 6 SD of all three study days (n = 20). Triacylglycerol (TAG), free fatty acids (FFA).
doi:10.1371/journal.pone.0053474.t002

Table 3. Baseline and postprandial values of vascular function measures after high fat/high energy (HF/HE) or average breakfast
control shake consumption.

Shake Time P-value

Baseline 3h 6h Shake Time
Interaction
Shake*Time

Iontophoresis

Total Ach (AUC) HF/HE 26746982 13286576 11756533 0.597 ,0.001 0.451

control 246461030 14576861 11346664

Total SNP (AUC) HF/HE 29646823 21896809 21496787 0.217 ,0.001 0.260

control 27316960 23286868 199761091

Brachial blood pressure

Systolic BP HF/HE 11065 11464 11664 0.001 ,0.001 0.003

(mmHg) control 11064 11164 11364

Diastolic BP HF/HE 5965 5864 5864 0.565 0.124 0.832

(mmHg) control 5964 5864 5864

Heart rate HF/HE 5465 5864 5764 0.001 ,0.001 0.001

(BPM) control 5564 5564 5564

Pulse Wave Analysis

Central systolic BP HF/HE 9264 9364 9463 0.001 0.070 0.075

(mmHg) control 9264 9163 9263

Central Pulse HF/HE 3363 3562 3662 ,0.001 ,0.001 0.028

pressure (mmHg) control 3363 3362 3463

AIX (%) HF/HE 213610 215610 21666 0.012 0.106 0.903

control 21667 21767 21868

FMD

Baseline vessel HF/HE 42126145 42336135 42236135 0.060 0.671 0.519

diameter (mm) control 42076140 41806125 41946177

Maximum vessel HF/HE 44196179 44226150 44456187 0.025 0.026 0.404

diameter (mm) control 44076170 43476134 44106160

FMD (%) HF/HE 5.0562.01 4.5461.88 5.3662.55 0.322 0.004 0.818

control 4.8762.50 4.1362.02 5.2562.09

Values are pooled mean 6 SD of all three study days (n = 20). Acetylcholine (Ach), sodium nitroprusside (SNP), area under the curve (AUC), beats per minute (BPM),
blood pressure (BP), augmentation index (AIX), flow mediated dilatation (FMD).
doi:10.1371/journal.pone.0053474.t003
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generated the random allocation sequence. Shakes were given a

code and both subjects and researchers were blinded to the

intervention. Prior to each study day, subjects consumed a

standardized low fat evening meal, were refrained from alcohol

or strenuous exercise and were not allowed to eat or drink

anything except water after 08.00 pm. For each subject, starting

time of every study day was kept constant.

A study day was executed as follows: upon arrival, a cannula

was placed, baseline fasted blood samples were collected baseline

vascular measurements were done. Subsequently, the subject

received either a HF/HE or an average breakfast shake.

Postprandial vascular measurements and blood samples were

taken 3 and 6 hours after milkshake consumption. These time

points were chosen because in previous studies, a maximal FMD

response was observed 3 hours after high fat meal consumption

and the FMD measure was back to baseline values 6 hours

postprandially [14,15]. Throughout the study day, subjects were

not allowed to eat or drink anything except water.

Shakes
The HF/HE shake consisted of 53%(w/v) fresh cream, 3%(w/v)

sugar and 44%(w/v) water and reflected a macronutrient

composition of 6g protein, 95g fat (of which 54g saturated), 22g

carbohydrates and represented a total energy content of 3992KJ.

The average breakfast shake was, based on macronutrient

composition, comparable to a breakfast as averagely consumed

by young men in the Netherlands [16]. This average breakfast

shake consisted of 43%(w/v) full cream milk, 48%(w/v) full cream

yoghurt, 4%(w/v) lemonade, 4%(w/v) fantomalt (Nutricia B.V.,

the Netherlands) and 1%(w/v) wheat fiber and reflected a

macronutrient composition of 17g protein, 14.5g fat, (of which

9g saturated), 49.5g carbohydrates and 2.3g fiber and represented

a total energy content of 1674KJ (NEVO 2006). Both shakes had a

total volume of 500 ml.

Metabolic parameters
Plasma triacylglycerol (TAG), free fatty acids (FFA), insulin and

glucose concentrations were assessed at baseline and 1, 2, 3, 4, and

6 hours after milkshake consumption and were measured by a

hospital laboratory (SHO, Velp, the Netherlands).

Functional measures of vascular function
Measurements of vascular function included micro-vascular skin

blood flow, arterial stiffness and FMD. Measures were performed

in above mentioned order and whole data was acquired at baseline

and 3 and 6 hours after shake consumption. All measurements

were performed in supine position after 10 minutes rest, in a quiet

temperature controlled room at moderate light intensity.

Table 4. Baseline and postprandial changes in inflammatory cytokines after high fat/high energy (HF/HE) or average breakfast
control shake consumption.

Shake Time P-value

Baseline 3h 6h Shake Time Interaction Shake*Time

CRP HF/HE 4646615 4356573 4126528 0.150 0.305 0.186

(ng/ml) control 4616746 64161357 769 61841

SAA HF/HE 4976277 4226267 3826206 0.065 0.225 0.022

(ng/ml) control 5206432 5326490 585 6604

sICAM-1 HF/HE 181627 179626 176630 0.464 0.056 0.856

(ng/ml) control 177627 179631 178632

sVCAM-1 HF/HE 305637 296635 296635 0.003 0.175 0.038

(ng/ml) control 294645 298649 304650

E-selectin HF/HE 6.0361.91 5.6661.81 5.7961.87 0.744 0.038 0.832

(ng/ml) control 6.4062.52 5.8361.83 5.8161.60

P-selectin HF/HE 51.9616.1 52.0615.5 53.0618.8 0.786 0.912 0.623

(ng/ml) control 50.5611.9 51.4611.0 49.8613.2

sICAM-3 HF/HE 1.4760.28 1.4860.26 1.5260.27 0.064 0.042 0.105

(ng/ml) control 1.5260.33 1.4260.18 1.5060.28

Thrombomo HF/HE 2.3460.42 2.2360.36 2.2160.37 0.739 ,0.001 0.955

dulin ng/ml) control 2.3960.40 2.2860.39 2.2460.37

IL-1b HF/HE 0.4760.31 0.4760.28 0.4960.32 0.346 0.149 0.712

(pg/ml) control 0.3860.17 0.5460.48 0.5760.50

IL-6 HF/HE 0.7460.24 1.1860.48 1.3860.73 0.401 ,0.001 0.141

(pg/ml) control 1.1061.01 1.4060.85 2.3162.31

IL-8 HF/HE 4.0860.95 4.3661.18 4.4561.00 0.002 0.481 0.043

(pg/ml) control 4.1561.20 3.8460.74 3.7860.77

TNFa HF/HE 6.1261.70 6.0761.96 6.1261.91 0.296 0.677 0.482

(pg/ml) control 5.9061.57 6.1961.75 6.1961.87

Values are mean 6 SD from the last study days (n = 20).
doi:10.1371/journal.pone.0053474.t004
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Blood pressure. Blood pressure (BP) ad heart rate (HR) were

assessed automatically (DINAMAPH PRO 100) during the

functional measurements with a 5 minute interval.

Iontophoresis laser Doppler. Micro-vascular skin blood

flow was assessed by laser Doppler iontophoresis [17]. Briefly, two

ion chambers (MIC-ION6, Moor Instruments, UK) on the volar

aspect of the forearm were filled with 1% sodium nitroprusside

(SNP) (Sigma – 31444-50G) or 1% acetylcholine (Ach) (Sigma –

A6625-25G) solution and iontophoretically administered

(MIC2TM, Moor Instruments, UK). Skin blood flow was recorded

by laser Doppler (MoorFLPI, Moor Instruments, UK) and

expressed as incremental area under the curve (AUC) calculated

from mean flux outcomes plotted against total recorded time

period (NCSS software v07.1.4).

Pulse wave analysis of the radial artery. Arterial stiffness

was assessed by pulse wave analysis (PWA) of the radial artery by

applanation tonometry (SphygmoCorHCP System, ATcor Medi-

cal). In short, a pressure-sensitive probe was placed on the radial

artery to generate a pulse pressure wave (Sphygmocor software

v8.0). In combination with the brachial blood pressure measure-

ments we deduced central aortic pressures and the heart rate

corrected augmentation index (AIX) [18].

Flow-mediated dilatation. FMD was performed according

to techniques described by the International Brachial Artery

Reactivity Task Force [19]. In short, after baseline recordings, a

pressure cuff on the forearm was inflated and kept constant at a

pressure of 200 mmHg for 5 min. Thereafter, the cuff was

released and records of the artery were made every 20 seconds for

4 minutes (Picus, ART.LAB v2.1, Esaote benelux bv.). FMD was

computed as maximum vessel diameter after cuff release divided

by baseline and expressed in percentage. A nitroglycerin dose was

administrated sublingually by spray at the end of each day.

Blood measures
Plasma markers. Baseline and postprandial plasma cytokine

concentrations were determined once for each shake and analyzed

on preformatted arrays on a SECTOR Imager 2400 reader (Meso

Scale Diagnostics, LLC) as described previously [20].

PBMC Gene expression. Peripheral blood mononuclear

cells (PBMCs) were isolated by BD Vacutainer Cell Preparation

Tubes. RNA was isolated (RNeasy Micro kit, Qiagen, Venlo, the

Netherlands), quantified (Nanodrop ND 1000, Nanodrop tech-

nologies, Wilmington, Delaware USA) and quality was determined

(Agilent 2100 Bioanalyser, Agilent Technologies, South Queen-

sferry, UK). RNA with a RIN score .7 was thereafter reverse

transcribed (cDNA synthesis kit, Promega, Leiden, the Nether-

lands) and analyzed by qPCR (SensiMix SYBR No-ROX, Bioline,

London, UK) on a CFX384 Real-Time System (C1000 Thermal

Cycler, Biorad, Veenendaal, The Netherlands). Primer sequences

were chosen based on the sequences available in Primer3 (v. 0.4.0).

Data was normalized by the housekeeping gene hUPO.

Statistics. Study outcomes of all three testing days are

expressed as pooled mean and SD was calculated by the root

mean squared error. Statistical comparisons were performed by

linear mixed models for repeated measures (PASW statistics

17.0.3), using ‘diet’, ‘time point’ and ‘diet x time point’ as fixed

effects and subject as random effect. Postprandial responses on

plasma cytokines were determined once for each shake and

baseline values were included as covariate in the model if they

were of significant influence and Studentized residuals .3,

obtained from the mixed model, were considered outliers and

removed from the model. A value of P,0.05 was considered

significant.

Results

Subjects characteristics
Twenty volunteers entered the study. Eighteen completed all six

study days, one volunteer completed four study days and one

completed two study days (Figure 1). Baseline characteristics of

the subjects are listed in Table 1.

Table 5. Changes in expression of genes involved in inflammation in PBMC’s after high fat/high energy (HF/HE) or average
breakfast control shake consumption.

Shake SLR P-value

3h 6h Shake Time Interaction Shake*Time

IL-8 HF/HE 1.2362.10 1.3762.56 0.003 ,0.001 ,0.001

control 20.2662.00 0.6862.17

MCP1 HF/HE 0.3261.20 0.7561.44 0.049 0.001 0.100

control 20.0361.58 0.2861.61

TNFa HF/HE 0.4060.38 0.2960.70 0.101 ,0.001 0.213

control 0.2360.49 0.2260.41

CD62l HF/HE 0.0360.39 0.0360.61 0.517 0.035 0.102

control 0.0260.49 0.19 60.49

CD54/ HF/HE 0.2560.62 20.0360.64 0.987 0.001 0.006

ICAM-1 control 0.0860.70 0.1260.64

IL-1b HF/HE 0.0060.70 0.0060.87 0.278 0.216 0.175

control 20.2760.90 20.0561.09

CD11a HF/HE 20.1060.50 20.1360.66 0.739 0.690 0.825

control 20.0860.50 20.0860.44

Changes are expressed as signal to log ratio (SLR) compared to baseline values, values are pooled mean 6 SD of all three study days (n = 20).
doi:10.1371/journal.pone.0053474.t005
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Metabolic parameters
Baseline and postprandial changes in TAG, FFA, insulin and

glucose are listed in Table 2. A significant difference in response

between the HF/HE and the average breakfast shake was

observed for all parameters.

Measures of vascular function
Outcomes of all functional vascular measures are listed in

Table 3. Consumption of both shakes resulted in a small but

significant postprandial reduction in FMD% at 3 hours that

returned to baseline after 6 hours. No significant difference in

response between shakes was observed. Consumption of both

shakes resulted in an significant postprandial increase in HR and

systolic blood pressure (SBP), with a significant higher response

after HF/HE shake consumption. No significant postprandial

changes were observed for diastolic blood pressure (DBP). Similar

to the effects on SBP, HF/HE consumption also resulted in a

higher postprandial increase in central aortic pulse pressure. AIX

was significantly decreased for both shakes, with no difference in

response between shakes. Micro-vascular blood flow was signifi-

cant reduced after consumption of both shakes, with no difference

in response between shakes. Similar results were observed for both

SNP and Ach treatment.

Plasma cytokines
Plasma cytokines levels before and after milkshake consumption

are listed in Table 4. A significant increase in IL-8 was observed

after HE/HF shake consumption compared to an average

breakfast. Plasma concentrations of SAA and VCAM-1 were

significantly decreased after a HE/HF milkshake compared to an

average breakfast. Consumption of both shakes resulted in a

significant postprandial increase in plasma levels of IL-6, whereas

E-selectin and thrombomodulin were decreased postprandially.

PBMC gene expression
We examined expression changes of a selection of genes

(Table 5), known to be involved in inflammation or endothelial

function in PBMCs. HF/HE shake consumption resulted in a

higher postprandial up regulation of IL-8 after 3 and 6 hours, and

CD54 (ICAM-1) after 3 hours, compared to an average breakfast.

Several other inflammatory genes, like TNFa, MCP1 and CD62l,

were up-regulated postprandially, with no differences in response

between shakes.

As illustrated in Figure 2, postprandial responses on HR, SBP,

FMD and IL-8 gene expression were similar for each repeated

testing day.

Discussion

In the current study we used a comprehensive approach to

study postprandial effects of a HF/HE meal on vascular function

and plasma markers of endothelial function and inflammation in

young healthy subjects by comparing it to average breakfast

milkshake. HF/HE shake consumption was associated with a more

pronounced increase in HR, SBP, plasma IL-8 and PBMC gene

expression of IL-8 and CD54 (ICAM-1) compared to average

breakfast shake consumption.

Only a limited number of studies on postprandial effects of a

HF/HE meal on HR and BP have been performed in young

healthy individuals. Ayer et al., showed an increase in HR 3 hours

after HF meal consumption in a healthy young population [9].

However no reference meal was included and it is therefore

unclear if the observed effects are caused by HF or by a common

postprandial response. With respect to BP, Biston et al. observed

that ingestion of a mixed meal was associated with a postprandial

increase in SBP in young healthy subjects, but they did not

compared this response with other meal types [21]. Our observed

postprandial increase in BP and HR after both shakes may point

towards sympathetic activation after meal intake [22]. Another

factor known to affect BP is insulin. By stimulating vasodilatation,

insulin is able to reduce BP [23]. The lower BP increase after the

average breakfast shake may be due to the higher postprandial

insulin concentrations after this shake. However, the insulin peak

was increased one hour postprandially, whereas BP was measured

three and six hours postprandially.

Although no differences in response between shakes were

observed on most vascular measurements, several measures were

altered after consumption of both shakes and are therefore caused

by consumption of the meal and/or circadian effects. One

example is the small but significant postprandial reduction in

FMD%. While several previous studies observed a postprandial

decrease in FMD after HF consumption, many others found no

effect or found an effect with all intervention meals (reviewed by

Jackson et al.) [5]. Interestingly, many of the studies with no effect

were conducted in healthy individuals [9,24,25]. We hypothesize

that young healthy individuals are still able to handle a high fat

and high energy load in such a way that a similar postprandial

endothelial response is observed after an averagely consumed

breakfast meal.

Besides a postprandial reduction in FMD, consumption of both

shakes also altered the AIX and micro-vascular blood flow. The

postprandial decrease in AIX is in line with previous findings

[9,10,26]. The mechanism behind this postprandial reduction in

AIX has been less well studied, but arterial smooth muscle

relaxation in the general circulation in response to nutrient

delivery might be an explanation [26]. AIX values were already

negative at baseline and an augmented pressure was therefore not

present in this study population. The postprandial decrease in AIX

did therefore not affect postprandial central pulse pressure

outcomes. The blunted vasoactive compound-induced increase

in micro-vascular blood flow after consumption of both shakes was

observed for both SNP and Ach and is therefore not endothelium

dependent. However, vasoactive compounds were repeatedly

administrated at the same location within a few hours. We

therefore cannot exclude a reduced sensitivity of the vasculature

for these compounds, explaining the observed blunted increase in

blood flow.

HF/HE shake consumption resulted in an increase in plasma

concentrations and PBMC gene expression of IL-8 compared to

the average breakfast shake. Postprandial studies on IL-8 measures

are limited. Esposito et al. found that serum IL-8 concentrations

did not change significantly 4 hours after HF consumption in 30

middle aged diabetic and 30 non-diabetic subjects [27]. However,

their HF intervention meal was a mixed meal, which contained

besides 52g of fat also 58g of carbohydrates, which is closely to the

49.5g carbohydrates in our average breakfast shake that showed

no response on IL-8. Another study that measured plasma

concentrations of IL-8 in 8 healthy young men found a non-

Figure 2. Postprandial changes after consumption of high fat/high energy (HF/HE) or average breakfast shake on heart rate (A),
systolic blood pressure (B), FMD (C) and PBMC gene expression of IL-8 (D) subdivided for repeated testing days. Values are mean 6
SD.
doi:10.1371/journal.pone.0053474.g002
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significant increase two hours after HF meal consumption [14].

However, they did not measure beyond 2 hours postprandially.

Although hardly evaluated in postprandial studies, IL-8 is of

importance for atherosclerosis development as it is involved in

neutrophil activation and recruitment [28] and triggers monocyte

adhesion to the vascular endothelium [29]. IL-8 gene expression

and production can be regulated by oxidant stress [30,31]. HF/

HE consumption may initiate oxidant stress and thereby trigger

endothelial cells to produce and release IL-8, where it is stored in

Weibel-Palade bodies [32].

The HF/HE specific decrease in plasma levels of sVCAM-1 is

not in line with the general prevailing hypothesis that HF meal

consumption is associated with an increase in soluble adhesion

molecules [2]. However, postprandial studies regarding soluble

adhesion molecules have not shown consistent results. Some

studies report elevated sICAM-1 and sVCAM-1 levels after HF

meal consumption [33,34], whereas many others do not

[35,36,37,38,39]. Only one studie found a decrease after HF

meal consumption [40]. In general, most studies that did not

observe a postprandial increase were performed in younger and

often healthy study populations.

Besides the prevailing hypothesis that triglycerides rich particles

may increase inflammation, recent human intervention studies

demonstrated that high fat/high energy intake can increase

circulating endotoxins [41]. These postprandial endotoxins are

transported through the gut wall during chylomicron uptake and

are able to activate inflammation [42]. Harte et al. showed that

circulating endotoxins levels show more dramatic postprandial

changes in groups with a higher metabolic risk [41]. This might

additional explain why in our young healthy study population,

several plasma inflammatory cytokines were not altered after HF/

HE consumption. To draw a parallel with the measures of vascular

function, plasma cytokines were measured at baseline and 3 and

6 hours after shake consumption. As a consequence changes in

plasma cytokines that occurred before 3 hours are not detected. It

has for example been shown that the cytokines CCL5/RANTES

and MCP1 are already changed 1 hour after high fat meal intake

[43].

The design used in the current study, with three repeated

observations of the intervention within the same individual,

allowed to detect small but significant effect sizes, even for

measures known for their large variation in reproducibility, such as

FMD. In addition, many other previous postprandial studies with

high fat challenges used water, fasting or other type of

macronutrients as a reference meal. These studies cannot rule

out that observed effects are also elicited by a common meal. To

enable distinguishing between a HF/HE and a common meal

response, we used an averagely consumed breakfast shake as a

control. As a consequence, both shakes were not isocaloric and

observed differences in response between shakes cannot solely be

described to the high fat content but can also be caused by the

high energy content or difference in macronutrient composition.

Nevertheless, as individuals are daily exposed to a breakfast, the

usage of an average breakfast meal as a control mirrors the real life

situation.

Conclusions

Whereas no difference in postprandial response were observed

on classical markers of endothelial function, we did observe

differences between consumption of a HF/HE and an average

breakfast meal on blood pressure and IL-8 in young healthy

volunteers. The postprandial increase in blood pressure and

plasma IL-8 concentrations after a high fat meal might create a

potential harmful environment for the endothelium which in

young healthy individuals may not directly affect measures of

vascular function, but repeated exposure may on the long run

induce endothelial dysfunction. This may be a likely occurrence,

since in the western world high fat and high energy meals are

regularly consumed. Since IL-8 was one off the only factors

different in response between the shakes, it might play a role in

dealing with high fat challenges and one of the first factors that

may reflect endothelial stress, a stage preceding endothelial

dysfunction.
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