1,429 research outputs found

    Non-resonant microwave absorption studies of superconducting MgB_2

    Get PDF
    Non-resonant microwave absorption(NRMA) studies of superconducting MgB_2 at a frequency of 9.43 GHz in the field range -50 Gauss to 5000 Gauss are reported. The NRMA results indicate near absence of intergranular weak links. A linear temperature dependence of the lower critical field H_c1 is observed indicating a non s-wave superconductivity. However, the phase reversal of the NRMA signal which could suggest d-wave symmetry is also not observed.Comment: 8 pages, 2 figure

    Magnetic structures and reorientation transitions in noncentrosymmetric uniaxial antiferromagnets

    Full text link
    A phenomenological theory of magnetic states in noncentrosymmetric tetragonal antiferromagnets is developed, which has to include homogeneous and inhomogeneous terms (Lifshitz-invariants) derived from Dzyaloshinskii-Moriya couplings. Magnetic properties of this class of antiferromagnets with low crystal symmetry are discussed in relation to its first known members, the recently detected compounds Ba2CuGe2O7 and K2V3O8. Crystallographic symmetry and magnetic ordering in these systems allow the simultaneous occurrence of chiral inhomogeneous magnetic structures and weak ferromagnetism. New types of incommensurate magnetic structures are possible, namely, chiral helices with rotation of staggered magnetization and oscillations of the total magnetization. Field-induced reorientation transitions into modulated states have been studied and corresponding phase diagrams are constructed. Structures of magnetic defects (domain-walls and vortices) are discussed. In particular, vortices, i.e. localized non-singular line defects, are stabilized by the inhomogeneous Dzyaloshinskii-Moriya interactions in uniaxial noncentrosymmetric antiferromagnets.Comment: 18 pages RevTeX4, 13 figure

    Hard Interactions of Quarks and Gluons: a Primer for LHC Physics

    Get PDF
    In this review article, we develop the perturbative framework for the calculation of hard scattering processes. We undertake to provide both a reasonably rigorous development of the formalism of hard scattering of quarks and gluons as well as an intuitive understanding of the physics behind the scattering. We emphasize the importance of logarithmic corrections as well as power counting of the strong coupling constant in order to understand the behavior of hard scattering processes. We include "rules of thumb" as well as "official recommendations", and where possible seek to dispel some myths. Experiences that have been gained at the Fermilab Tevatron are recounted and, where appropriate, extrapolated to the LHC.Comment: 118 pages, 107 figures; to be published in Reports on Progress in Physic

    Limits on WWgamma and WWZ Couplings from W Boson Pair Production

    Get PDF
    The results of a search for W boson pair production in pbar-p collisions at sqrt{s}=1.8 TeV with subsequent decay to emu, ee, and mumu channels are presented. Five candidate events are observed with an expected background of 3.1+-0.4 events for an integrated luminosity of approximately 97 pb^{-1}. Limits on the anomalous couplings are obtained from a maximum likelihood fit of the E_T spectra of the leptons in the candidate events. Assuming identical WWgamma and WWZ couplings, the 95 % C.L. limits are -0.62<Delta_kappa<0.77 (lambda = 0) and -0.53<lambda<0.56 (Delta_kappa = 0) for a form factor scale Lambda = 1.5 TeV.Comment: 10 pages, 1 figure, submitted to Physical Review

    Quark-Gluon Matter

    Get PDF
    A concise review of the experimental and phenomenological progress in high-energy heavy-ion physics over the past few years is presented. Emphasis is put on measurements at BNL-RHIC and CERN-SPS which provide information on fundamental properties of QCD matter at extreme values of temperature, density and low-x. The new opportunities accessible at the LHC, which may help clarify some of the current open issues, are also outlined.Comment: Minor changes to text. New refs. included. Updated figures with final dat

    Reconstructed Jets at RHIC

    Full text link
    To precisely measure jets over a large background such as pile up in high luminosity p+p collisions at LHC, a new generation of jet reconstruction algorithms is developed. These algorithms are also applicable to reconstruct jets in the heavy ion environment where large event multiplicities are produced. Energy loss in the medium created in heavy ion collisions are already observed indirectly via inclusive hadron distributions and di-hadron correlations. Jets can be used to study this energy loss in detail with reduced biases. We review the latest results on jet-medium interactions as seen in A+A collisions at RHIC, focusing on the recent progress on jet reconstruction in heavy ion collisions.Comment: Proceedings for the 26th Winter Workshop on Nuclear Dynamic

    Direct measurement of the mass difference between top and antitop quarks

    Get PDF
    We present a direct measurement of the mass difference between top and antitop quarks (dm) in lepton+jets top-antitop final states using the "matrix element" method. The purity of the lepton+jets sample is enhanced for top-antitop events by identifying at least one of the jet as originating from a b quark. The analyzed data correspond to 3.6 fb-1 of proton-antiproton collisions at 1.96 TeV acquired by D0 in Run II of the Fermilab Tevatron Collider. The combination of the e+jets and mu+jets channels yields dm = 0.8 +/- 1.8 (stat) +/- 0.5 (syst) GeV, which is in agreement with the standard model expectation of no mass difference.Comment: submitted to Phys. Rev.

    Measurement of Leptonic Asymmetries and Top Quark Polarization in ttbar Production

    Get PDF
    We present measurements of lepton (l) angular distributions in ttbar -> W+ b W- b -> l+ nu b l- nubar bbar decays produced in ppbar collisions at a center-of-mass energy of sqrt(s)=1.96TeV, where l is an electron or muon. Using data corresponding to an integrated luminosity of 5.4fb^-1, collected with the D0 detector at the Fermilab Collider, we find that the angular distributions of l- relative to anti-protons and l+ relative to protons are in agreement with each other. Combining the two distributions and correcting for detector acceptance we obtain the forward-backward asymmetry A^l_FB = (5.8 +- 5.1(stat) +- 1.3(syst))%, compared to the standard model prediction of A^l_FB (predicted) = (4.7 +- 0.1)%. This result is further combined with the measurement based on the analysis of the l+jets final state to obtain A^l_FB = (11.8 +- 3.2)%. Furthermore, we present a first study of the top-quark polarization.Comment: submitted versio

    Search for B0→π0π0B^{0}\to \pi^{0}\pi^{0} Decay

    Get PDF
    We have searched for the charmless hadronic decay of B0 mesons into two neutral pions. Using 9.13fb^-1 taken at the Upsilon(4S) with the CLEO detector, we obtain an improved upper limit for the branching fraction BR(B0-->pi0pi0) < 5.7*10^-6 at the 90% confidence level.Comment: pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Search for Zgamma events with large missing transverse energy in ppbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    We present the first search for supersymmetry (SUSY) in Zgamma final states with large missing transverse energy using data corresponding to an integrated luminosity of 6.2 fb-1 collected with the D0 experiment in ppbar collisions at sqrt(s)=1.96 TeV. This signature is predicted in gauge-mediated SUSY-breaking models, where the lightest neutralino is the next-to-lightest supersymmetric particle (NLSP) and is produced in pairs, possibly through decay from heavier supersymmetric particles. The NLSP can decay either to a Z boson or a photon and an associated gravitino that escapes detection. We exclude this model at the 95% C.L. for SUSY breaking scales of Lambda < 87 TeV, corresponding to neutralino masses of < 151 GeV.Comment: submitted to Phys. Rev. Let
    • …
    corecore