214 research outputs found

    The relationship between brain tissue properties and MRI signal

    Get PDF
    Increased signal to noise ratio in high field magnetic resonance imaging (MRI) allows the acquisition of high resolution images and the development of the quantitative techniques for measuring tissue properties. This detailed information can provide a better understanding of the structure and function of the healthy brain but, more importantly, it can also provide methods for explaining pathological processes in neurodegenerative diseases. The work described in this thesis investigated iron and myelin content in the brain using 7T MRI. Multiple sclerosis (MS) is one of the most common demyelinating diseases. White matter (WM) lesions detected in MS with conventional MRI techniques show poor correlation with the disease progression. In this work investigation of degeneration of the WM as well as cortical and deep grey matter (GM) in MS and clinically isolated syndrome (CIS) suggestive of MS was performed using high resolution quantitative MRI techniques. Iron plays an important role in the physiological processes of the healthy brain, but its excessive accumulation in the particular brain structures accompanies neurodegeneration in Parkinson’s disease (PD). Studies analysing anatomy and quantitative properties of these structures, in vivo and post mortem, comparing PD patients with healthy controls are presented in this thesis. Investigation related to iron is supported by the simulations aimed at understand the effects of tissue microstructure related to iron on the MR signal. The presented analyses provide a better understanding of the complex dependencies of different MR contrasts on myelin and iron content

    The relationship between brain tissue properties and MRI signal

    Get PDF
    Increased signal to noise ratio in high field magnetic resonance imaging (MRI) allows the acquisition of high resolution images and the development of the quantitative techniques for measuring tissue properties. This detailed information can provide a better understanding of the structure and function of the healthy brain but, more importantly, it can also provide methods for explaining pathological processes in neurodegenerative diseases. The work described in this thesis investigated iron and myelin content in the brain using 7T MRI. Multiple sclerosis (MS) is one of the most common demyelinating diseases. White matter (WM) lesions detected in MS with conventional MRI techniques show poor correlation with the disease progression. In this work investigation of degeneration of the WM as well as cortical and deep grey matter (GM) in MS and clinically isolated syndrome (CIS) suggestive of MS was performed using high resolution quantitative MRI techniques. Iron plays an important role in the physiological processes of the healthy brain, but its excessive accumulation in the particular brain structures accompanies neurodegeneration in Parkinson’s disease (PD). Studies analysing anatomy and quantitative properties of these structures, in vivo and post mortem, comparing PD patients with healthy controls are presented in this thesis. Investigation related to iron is supported by the simulations aimed at understand the effects of tissue microstructure related to iron on the MR signal. The presented analyses provide a better understanding of the complex dependencies of different MR contrasts on myelin and iron content

    Parkinson's disease related signal change in the nigrosomes 1–5 and the substantia nigra using T2* weighted 7T MRI

    Get PDF
    Improved markers for the progression of Parkinson's disease (PD) are required. Previous work has proven that iron dependent MRI scans can detect the largest Nigrosome (N1) within the substantia nigra (SN) pars compacta and changes in PD. Histopathological studies have shown that N1 is particularly affected in early PD whereas the other nigrosomes (N2–N5) and the surrounding iron-rich SN are affected later. In this study we aimed to determine whether MRI can detect the smaller nigrosomes (N2–N5) and whether graded signal alterations can be detected on T2*-weighted MRI at different disease stages consistent with histopathological changes.An observational prospective study was performed within the research imaging centre at the University of Nottingham, UK. Altogether 26 individuals with confirmed PD (median Hoehn&Yahr stage = 1, Unified PD Rating Scale [UPDRS] = 12.5) and 15 healthy controls participated. High resolution T2*weighted 7T MRI of the brain was performed and visibility of N1-N5 within the SN was qualitatively rated. Normalised T2*weighted signal intensities in manually segmented N1–N5 regions and iron-rich SN were calculated. We performed group comparisons and correlations with severity based on UPDRS. Qualitative measures were a nigrosome visibility score and a confidence score for identification. Quantitative measures were T2*weighted contrast of N1–5 and iron-rich SN relative to white matter.We found that visual assessment of the SN for N1–N5 revealed normal range visibility scores in 14 of 15 controls. N1 was identified with the highest confidence and visibility was in abnormal range in all 26 PD patients. The other nigrosomes were less well visible and less confidently identified. There was a larger PD induced signal reduction in all nigrosomes than in the iron-rich SN (median signal difference N1–5 PD compared to controls: 19.4% [IQR = 24%], iron-rich SN 11% [IQR = 24%, p = 0.017]). The largest PD induced signal reduction was in N1: 37.2% [IQR = 19%] which inversely correlated with UPDRS in PD (R2 = 0.19).All nigrosomes can be detected using 7T MRI, and PD induced T2*weighted signal reduction was greatest in the nigrosomes (especially N1). The graded T2*weighted signal alterations in the nigrosomes match previously described differential histopathological effects of PD. N1 was identified with the highest confidence and T2*weighted signal in N1 correlated with UPDRS confirming N1 as the most promising SN marker of PD pathology

    T2 Mapping from Super-Resolution-Reconstructed Clinical Fast Spin Echo Magnetic Resonance Acquisitions

    Get PDF
    Relaxometry studies in preterm and at-term newborns have provided insight into brain microstructure, thus opening new avenues for studying normal brain development and supporting diagnosis in equivocal neurological situations. However, such quantitative techniques require long acquisition times and therefore cannot be straightforwardly translated to in utero brain developmental studies. In clinical fetal brain magnetic resonance imaging routine, 2D low-resolution T2-weighted fast spin echo sequences are used to minimize the effects of unpredictable fetal motion during acquisition. As super-resolution techniques make it possible to reconstruct a 3D high-resolution volume of the fetal brain from clinical low-resolution images, their combination with quantitative acquisition schemes could provide fast and accurate T2 measurements. In this context, the present work demonstrates the feasibility of using super-resolution reconstruction from conventional T2-weighted fast spin echo sequences for 3D isotropic T2 mapping. A quantitative magnetic resonance phantom was imaged using a clinical T2-weighted fast spin echo sequence at variable echo time to allow for super-resolution reconstruction at every echo time and subsequent T2 mapping of samples whose relaxometric properties are close to those of fetal brain tissue. We demonstrate that this approach is highly repeatable, accurate and robust when using six echo times (total acquisition time under 9 minutes) as compared to gold-standard single-echo spin echo sequences (several hours for one single 2D slice)

    Seven-Tesla magnetization transfer imaging to detect multiple sclerosis white matter lesions

    Get PDF
    BACKGROUND AND PURPOSE: Fluid-attenuated inversion recovery (FLAIR) imaging at 3 Tesla (T) field strength is the most sensitive modality for detecting white matter lesions in multiple sclerosis. While 7T FLAIR is effective in detecting cortical lesions, it has not been fully optimized for visualization of white matter lesions and thus has not been used for delineating lesions in quantitative magnetic resonance imaging (MRI) studies of the normal appearing white matter in multiple sclerosis. Therefore, we aimed to evaluate the sensitivity of 7T magnetization-transfer-weighted (MTw) images in the detection of white matter lesions compared with 3T-FLAIR. METHODS:Fifteen patients with clinically isolated syndrome, 6 with multiple sclerosis, and 10 healthy participants were scanned with 7T 3-dimensional (D) MTw and 3T-2D-FLAIR sequences on the same day. White matter lesions visible on either sequence were delineated. RESULTS: Of 662 lesions identified on 3T-2D-FLAIR images, 652 were detected on 7T-3D-MTw images (sensitivity, 98%; 95% confidence interval, 97% to 99%). The Spearman correlation coefficient between lesion loads estimated by the two sequences was .910. The intrarater and interrater reliability for 7T-3D-MTw images was good with an intraclass correlation coefficient (ICC) of 98.4% and 81.8%, which is similar to that for 3T-2D-FLAIR images (ICC 96.1% and 96.7%). CONCLUSION: Seven-Tesla MTw sequences detected most of the white matter lesions identified by FLAIR at 3T. This suggests that 7T-MTw imaging is a robust alternative for detecting demyelinating lesions in addition to 3T-FLAIR. Future studies need to compare the roles of optimized 7T-FLAIR and of 7T-MTw imaging

    The Neuromelanin-related T2* Contrast in Postmortem Human Substantia Nigra with 7T MRI

    Get PDF
    High field magnetic resonance imaging (MRI)-based delineation of the substantia nigra (SN) and visualization of its inner cellular organization are promising methods for the evaluation of morphological changes associated with neurodegenerative diseases; however, corresponding MR contrasts must be matched and validated with quantitative histological information. Slices from two postmortem SN samples were imaged with a 7 Tesla (7T) MRI with T1 and T2* imaging protocols and then stained with Perl???s Prussian blue, Kluver-Barrera, tyrosine hydroxylase, and calbindin immunohistochemistry in a serial manner. The association between T2* values and quantitative histology was investigated with a co-registration method that accounts for histology slice preparation. The ventral T2* hypointense layers between the SNr and the crus cerebri extended anteriorly to the posterior part of the crus cerebri, which demonstrates the difficulty with an MRI-based delineation of the SN. We found that the paramagnetic hypointense areas within the dorsolateral SN corresponded to clusters of neuromelanin (NM). These NM-rich zones were distinct from the hypointense ventromedial regions with high iron pigments. Nigral T2* imaging at 7T can reflect the density of NM-containing neurons as the metal-bound NM macromolecules may decrease T2* values and cause hypointense signalling in T2* imaging at 7T.ope

    Gamma-irradiated human amniotic membrane decellularised with sodium dodecyl sulfate is a more efficient substrate for the ex vivo expansion of limbal stem cells

    Get PDF
    yesThe gold standard substrate for the ex vivo expansion of human limbal stem cells (LSCs) remains the human amniotic membrane (HAM) but this is not a defined substrate and is subject to biological variabil-ity and the potential to transmit disease. To better define HAM and mitigate the risk of disease transmis-sion, we sought to determine if decellularisation and/or c-irradiation have an adverse effect on culture growth and LSC phenotype. Ex vivo limbal explant cultures were set up on fresh HAM, HAM decellularised with 0.5 M NaOH, and 0.5% (w/v) sodium dodecyl sulfate (SDS) with or without c-irradiation. Explant growth rate was measured and LSC phenotype was characterised by histology, immunostaining and qRT-PCR (ABCG2, DNp63, Ki67, CK12, and CK13). Ƴ-irradiation marginally stiffened HAM, as measured by Brillouin spectromicroscopy. HAM stiffness and c-irradiation did not significantly affect the LSC phe-notype, however LSCs expanded significantly faster on Ƴ-irradiated SDS decellularised HAM (p < 0.05) which was also corroborated by the highest expression of Ki67 and putative LSC marker, ABCG2. Colony forming efficiency assays showed a greater yield and proportion of holoclones in cells cultured on Ƴ-irradiated SDS decellularised HAM. Together our data indicate that SDS decellularised HAM may be a more efficacious substrate for the expansion of LSCs and the use of a c-irradiated HAM allows the user to start the manufacturing process with a sterile substrate, potentially making it safer

    Infection of Differentiated Porcine Airway Epithelial Cells by Influenza Virus: Differential Susceptibility to Infection by Porcine and Avian Viruses

    Get PDF
    BACKGROUND: Swine are important hosts for influenza A viruses playing a crucial role in the epidemiology and interspecies transmission of these viruses. Respiratory epithelial cells are the primary target cells for influenza viruses. METHODOLOGY/PRINCIPAL FINDINGS: To analyze the infection of porcine airway epithelial cells by influenza viruses, we established precision-cut lung slices as a culture system for differentiated respiratory epithelial cells. Both ciliated and mucus-producing cells were found to be susceptible to infection by swine influenza A virus (H3N2 subtype) with high titers of infectious virus released into the supernatant already one day after infection. By comparison, growth of two avian influenza viruses (subtypes H9N2 and H7N7) was delayed by about 24 h. The two avian viruses differed both in the spectrum of susceptible cells and in the efficiency of replication. As the H9N2 virus grew to titers that were only tenfold lower than that of a porcine H3N2 virus this avian virus is an interesting candidate for interspecies transmission. Lectin staining indicated the presence of both α-2,3- and α-2,6-linked sialic acids on airway epithelial cells. However, their distribution did not correlate with pattern of virus infection indicating that staining by plant lectins is not a reliable indicator for the presence of cellular receptors for influenza viruses. CONCLUSIONS/SIGNIFICANCE: Differentiated respiratory epithelial cells significantly differ in their susceptibility to infection by avian influenza viruses. We expect that the newly described precision-cut lung slices from the swine lung are an interesting culture system to analyze the infection of differentiated respiratory epithelial cells by different pathogens (viral, bacterial and parasitic ones) of swine
    corecore