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Abstract 

Corneal blindness caused by limbal stem cell deficiency (LSCD) is a prevailing 

disorder worldwide. Clinical outcomes for LSCD therapy using amniotic membrane 

(AM) are unpredictable.  

 Hydrogels can eliminate limitations of standard therapy for LSCD, as they 

present all the advantages of AM, i.e. biocompatibility, inertness and a biodegradable 

structure, but unlike AM, they are structurally uniform and can be easily manipulated 

to alter biomechanical and physical properties. Hydrogels can be delivered with 

minimum trauma to the ocular surface and do not require extensive serological 

screening before clinical application. The hydrogel structure is also amenable to 

modifications which direct stem cell fate.  

This focussed review highlights hydrogels as biomaterial substrates which 

may replace and/or complement AM in the treatment of LSCD.   

 

Short Summary 

The structural uniformity of biocompatible hydrogels indicates their potential to 

induce predictable clinical outcomes for LSCD, as well as allow an understanding of 

mechanisms underlying the reversal of LSCD pathology. 
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1. An Overview of LSCD Therapy 

Damage to the outer limbal region of the cornea due to chemical (e.g. acid and alkali 

burns) and mechanical (e.g. extended contact lens wear) injuries, congenital disorders 

(e.g. Stevens Johnson syndrome) or bacterial and viral infections, causes destruction 

and depletion of resident adult stem cells [1-5]. LSCD is manifested by conjunctival 

and epithelial ingrowth, vascularization, chronic inflammation, recurrent erosions, 

persistent ulcers, destruction of the basement membrane, and fibrous tissue ingrowth 

[2-5]. Those pathologies lead to severe functional impairment of the cornea and 

clinical symptoms include irritation, epiphora, blepharospasms, photophobia, pain, 

and decreased vision [2-5]. Consequently, disruptions in renewal of the corneal 

epithelium occur (Figure 1.), which ultimately leads to blindness, and this is 

complicated by scarring, inflammation, and the invasion of conjunctival tissue [2-5].  

 

A diverse range of clinical methodologies, presenting inherent benefits and 

limitations, are currently available for treating LSCD [2-9, 10: B. Chen et al., 

unpublished]. Accurate diagnosis of the extent of LSCD (partial or total) is crucial for 

the planning of effective strategies to treat this condition. Variations in the severity of 

LSCD, however, indicate that the application of one single treatment will not be 

sufficient for all indications of this disorder. We will therefore present a concise, 

critical evaluation of the evolution of LSCD therapy to appreciate the range of 

treatment modalities for this disorder; we refer readers to a more comprehensive 

review by Tseng et al. (2010) [5] summarising treatment of this condition. 

 

 The basis for LSCD therapy is the transplantation of progenitor LEC into the 

damaged cornea. The foundations of modern treatment approaches for LSCD were 

laid when a surgical procedure using autologous conjunctival limbal autografts for 

contralateral cases of this condition was described [3]. This procedure restored 

corneal epithelial phenotype and reduced levels of goblet cells in the recipient cornea. 

Therapy for bilateral LSCD was subsequently performed with the transplantation of 

limbal allografts from cadavers, and was demonstrated as a viable strategy for 

reconstruction of corneal surfaces that had undergone bilateral diffuse destruction, 

with the loss of LSC [4]. 
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Therapy for LSCD progressed with the use of amniotic membrane (AM). AM 

alone was demonstrated as sufficient to treat partial (i.e. less than 360 degree damage 

to limbal tissue) LSCD [6], and AM without a limbal allograft or autograft has proven 

successful therapy for ocular damage as severe as chemical burns [6].  

 

 The main clinical benefits of AM include the ability to promote 

epithelialisation [6], reduce pain and scarring [7], and minimise inflammation [8]. The 

effectiveness of this biological substrate for promoting the success of transplanted 

LEC to treat total LSCD, lead to AM becoming the scaffold of choice for ex vivo 

expansion of LEC, a technique that eliminates the need for removing the limbus from 

a healthy eye [9]. Methodology for the cultivation of LEC on AM to preserve their 

stem phenotype and encourage proliferation and stratification continues to be 

rigorously investigated [5, 10: B. Chen et al., unpublished]. The preparation of cells 

(as an outgrowth from biopsies (explants) or isolated into a single-cell suspension) 

and the use of soluble factors (growth factors) alone or from feeder cells (e.g. 3T3 

fibroblasts) are examined as conditions that promote LEC growth and progenitor 

phenotype [5]. LEC culture on intact (iAM) or devitalized/denuded (dAM) AM and 

exposure of cultivated LSC to the air-liquid interface (air-lifting) are also studied to 

develop methods that maintain LEC stemness and stratification respectively [5]. 

Furthermore, studies are underway to modify the structure of AM to enhance the 

ability of this substrate to support the expansion of LEC [10: B. Chen et al., 

unpublished].  

 

 Key problems encountered with LSCD therapy that limit therapeutic outcomes 

include:  a.) variations in treatment outcomes due to structural heterogeneity of AM 

scaffolds as well as differences in the severity of LSCD, b.) a poor understanding of 

mechanisms underlying corneal repair mediated during LSCD therapy, c.) limited 

supplies of donor tissue which is essential in cases of bilateral total LSCD and, d.) 

inadequate means for eliminating long-term immunosuppression that is necessary 

following transplantation of allogeneic sources of LEC.   

 

 Solutions proposed for these challenges include: a.) the use of alternative cell 

types, corneal prostheses and cell storage strategies to alleviate problems with limbal 

tissue availability, b.) the use of structurally-uniform biomaterials for the delivery of 
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LEC to the damaged ocular surface, to eliminate variations in LSCD treatment, c.) the 

use of biomaterials with well-characterised and easily-modified structures to 

understand mechanisms by which LEC reverse the symptoms of LSCD. 
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2. Biomaterials for Regeneration of the Cornea 

The main uses for biomaterials applied to reconstruction of damaged corneal 

epithelium include hydrogels for LEC delivery [11-19], bioengineered prosthetic 

devices (keratoprostheses: KPro) that replace dysfunctional corneal tissue [20-26], 

contact lenses used for the correction of refractive errors [27-29], and materials for 

transcorneal drug delivery [30-34]. Ocular biomaterials used for the fabrication of 

intraocular lenses, glaucoma filtration implants, scleral buckles and viscoelastic 

replacement agents are reviewed elsewhere [35] and will not be discussed here. The 

wide range of biomaterials currently in use for regeneration of the cornea includes 

hydrogels [11-19, 36-37], porous silk fibroin films [38], keratin from hair or wool 

[39], 3D nanofiber scaffolds fabricated from polyamide 6/12 (PA6/12) [40] and 

electrospun poly(lactide-co-glycolide) membranes [41].   

 

Structural modification of biomaterials to enhance LEC adhesion [42-43] and 

control the differentiation [44] of these cells is the current direction for the application 

of these tools. Corneal epithelial tissue grown on polycarbonate surfaces with pore 

diameters of 0.1-3.0 µm were shown to lay down continuous basement membrane and 

a regular pattern of hemidesmosomal plaque on the 0.1 µm surface, and no adhesive 

structures assembled on the nonporous or on the 3.0 µm surface [42]. The expression 

of adhesion receptors, integrin α6 and β4 in corneal epithelial cells was shown to be 

higher on surfaces containing amine moieties than on surfaces containing only 

carboxyl moieties on hydroxyethylmethacrylate (HEMA) hydrogels modified by the 

addition of amines (N,N-dimethylaminoethylmethacrylate) or carboxyl moieties 

(methacrylic acid) [43]. Furthermore, modification of the stiffness/elastic modulus of 

collagen gels was recently shown to direct LEC differentiation [44].  

 

The integration of a range of compatible biomaterials with complementary 

functions for the construction of artificial systems may lead to the development of 

sophisticated medical devices with the potential to considerably enhance the efficacy 

and predictability of LSCD therapy. Those systems may be designed specifically to 

treat the differing extents of LSCD, with combined delivery of drug and cell-based 

therapies. Hydrogels, in particular, present key properties which indicate their 

suitability for the culture and/or delivery of LEC, i.e. chemical inertness, uniformity 

of structure, biocompatibility, and mechanical strength and pliability. 
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Hydrogels for the design of corneal prosthetics are also becoming increasingly 

popular. Collagen [20-26] and poly(2-hydroxyethyl methacrylate (PHEMA) [45] gels 

are mainly applied to the construction of KPro that are biointegrable in a manner that 

promotes regeneration of corneal cells, nerves, and ECM. In our own laboratory we 

have characterised laminin-coated, plastically-compressed collagen gels containing 

corneal fibroblasts for delivery of LEC to the damaged cornea (Figure 2.) [24-26].  

 

In the present review we will highlight a number of well-established and 

emerging hydrogel systems and discuss their suitability for treating LSCD. 
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3. The Potential for the use of Hydrogels in LSCD Therapy  

Hydrogels are multi-component systems consisting of a three-dimensional network of 

polymer chains and water [46]. Physical gels (pseudogels) comprise chains of 

macromolecules that are connected by electrostatic forces, hydrogen bonds, 

hydrophobic interactions or chain entanglements, and in chemical hydrogels, covalent 

bonds link polymer chains. Hydrogels are attractive scaffolding materials due to their 

highly swollen network structure, which enables encapsulation of cells and bioactive 

molecules, and efficient mass transfer of soluble factors to and from immobilised cells 

[46]. Clinical and pre-clinical studies indicate that fibrin, collagen, silicone, alginate, 

chitosan and gelatin hydrogels are lead candidates for the treatment of LSCD (Table 

1.).  

 

3.1. Fibrin hydrogels 

Fibrin gels are prepared by the combination of fibrinogen and thrombin, or from 

autologous serum [47]. These hydrogels are used extensively as biopolymer scaffolds 

to regenerate adipose tissue, bone, cartilage, cardiac tissue, liver, nervous tissue, 

ocular tissue, skin, tendons, and ligaments [47]. Certainly, the use of fibrin hydrogels 

in LSCD therapy is already established [11-15].   

 

Previous reports demonstrated that the majority of individuals within a group 

presenting LSCD regained their vision following treatment with fibrin-cultured LEC, 

and this outcome was sustained over long-term periods [12-13]. Rama et al. (2001) 

[12] reported a study where 14 out of 18 patients treated with LEC cultured on fibrin 

gels rapidly regained useful visual acuity. The corneas of treated patients underwent 

re-epithelialization within the first week, inflammation and vascularization was 

reduced within the first 3-4 weeks, and at a 12-27 month follow-up, corneal surfaces 

were clinically and cytologically stable [12].  

 

Subsequent studies demonstrated that fibrin gels were capable of supporting 

the stem/progenitor phenotype of LEC [13-14]. These gel scaffolds preferentially 

cultivated the expansion (ex vivo) of LEC; subcultivation of limbal holoclones 

preserved stem and progenitor cells in the basal layer of fibrin-based epithelial sheets 

[14]. Furthermore, the generation of normal, renewing epithelium on donor stroma 

treated with fibrin-cultured LEC correlated with cultures in which p63-bright cells 
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constituted more than 3% of the total number of clonogenic cells [13]. The majority 

(78%) of LSCD patients treated with fibrin-cultured LSC containing >3% p63 bright 

cells were successfully treated, whereas only 11% of LSCD patients received viable 

treatment with cultures containing <3% p63 bright cells [13]. 

 

Interestingly, another progenitor cell type, mesenchymal stem cells (MSC), 

encapsulated in fibrin gels induced reconstruction of the damaged corneal surface, and 

these cells expressed the corneal epithelial cell specific marker, cytokeratin 3 (CK3) 

whilst they were transplanted [15]. Further investigation under in vitro conditions 

demonstrated that MSC co-cultured with LEC or LEC conditioned medium, rapidly 

differentiated into cells that were phenotypically and morphologically similar to 

corneal epithelial cells [15].  

 

Therefore, fibrin hydrogels are clearly capable of maintaining the phenotype 

and directing the fate of stem cells, indicating that they may be exploited to 

understand the fundamental biology of LSC differentiation and self-renewal. The 

positioning of limbal holoclones on fibrin-cultured epithelial cells [14] suggests that 

these biomaterials may be used to construct a niche-like environment for LSC. 

Certainly, there is considerable potential to begin understanding mechanisms that 

regulate LSC function during transplantation, using these gels as in vitro systems. The 

requirement for effective logistics to deliver LSCD therapy together with the 

practicality of fibrin-cultured LESC, suggest that this hydrogel can form part of cell 

preservation and transportation technologies for wide ranging applications in corneal 

reconstruction therapies. 
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3.2. Collagen hydrogels 

Collagen is the most abundant structural protein in the cornea, and is biocompatible, 

biodegradable, possesses low immunogenicity and can maintain LEC adhesion, 

proliferation and differentiation [20-26]. The basement membrane (BM) of the limbal 

epithelium contains type IV collagen (α1 and α2 chains), and type IV collagen (α3 

chain) and type V collagen, are present in the corneal BM [48]. At present, the 

collagen hydrogels are mainly applied to LEC culture [16] and the formation of 

tissue-engineered scaffolds or KPro used for replacement of corneal tissue [20-26]. 

 

 Magnetically-oriented collagen fibre scaffolds were recently applied to the 

regeneration of human hemi corneas in vitro [23]. Reconstruction of the hemi cornea 

involved the formation of a well-defined epithelium as well as stroma by keratocytes 

which when aligned with collagen, were shown to lay down extracellular matrix 

components with features typical of collagen fibrils [23]. The aligned 

collagen/keratocyte construct induced re-epithelialisation of corneal stroma in vivo in 

a rabbit corneal injury model [23], indicating the potential of this biologically 

functional medical device for treating LSCD. 

 

By contrast, conventional collagen hydrogels are plastically-compressed or 

chemically-crosslinked to enhance mechanical strength before their use in the 

formation of stratified LEC [16, 24-26]. This strategy is in development at present, to 

design corneal epithelium equivalents for application as biointegrable KPro.        

  

 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-

hydroxysuccinimide (NHS) cross-linked recombinant human collagen-based artificial 

corneas are one of the first examples of these constructs tested on humans. In a Phase 

1 clinical trial, this biosynthetic scaffold was transplanted to the damaged cornea of 

10 patients with vision loss [22]. 6-month post-operative results demonstrated the 

regeneration of host epithelium and the growth of stromal cells into the implant, and a 

24-month follow up report of this study showed that implants retained stability and 

remained avascular without prolonged use of steroid immunosuppression, commonly 

required in traditional allotransplantation. Corneal re-epithelialisation, tear film 

formation, stromal cell maturation and nerve regeneration was observed in all patients 

and after 24 months, vision was significantly improved in 6 patients [22]. This study 



10 

 

was promising as it indicated that collagen KPro can be applied as donor corneas in a 

clinical setting. 

 

Simultaneous use of collagen hydrogels as corneal tissue replacements and as 

delivery systems for LESC may lead to the development of KPro capable of treating 

LSCD.  

 

3.3. Silicone hydrogels 

Silicone hydrogels comprise lotrafilcon A, balafilcon A, senofilcon A and comfilcon 

A, and are mainly used to produce second generation, soft contact lenses for the 

correction of refractive errors and as ocular bandages which aid re-epithelialisation of 

the cornea [27]. The major advantage of silicone lenses is efficient transmission of 

oxygen to the ocular surface using its water and polymer content [27]. Highly oxygen-

permeable (Dk) silicone hydrogel lenses allow rapid and stable re-epithelialisation of 

the cornea, have eliminated lens-induced hypoxia for the majority of wearers and 

have a less pronounced detrimental effect on corneal homeostasis compared to other 

lens types [28].  

 

 Recent reports suggest that in addition to application as a visual aid and an 

ocular bandage, silicone hydrogels may be applied to LSCD therapy [29-30]. The 

treatment of persistent corneal defects (PED), which include LSCD, dry eye 

syndrome, graft-versus-host disease, toxic keratitis, limbic keratoconjunctivitis, and 

neurotrophic keratitis [29], with hydrogel contact lenses (i.e. silicone lenses) is well-

documented [27-30]. Moreover, lotrafilcon A contact lenses were reported to sustain 

proliferation and migration of LEC from limbal tissue, which displayed a corneal 

phenotype (CK3
+
/CK12

+
/CK19

+
) and expressed p63 [30]. Microvilli with adhesive 

projections were observed on the apical surface of LEC cultured on the lens indicating 

that these cells were stable and likely to survive long-term [30]. Therefore, these 

findings suggested that it may be possible to generate a corneal epithelium on contact 

lenses and easily transfer this to cornea presenting LSCD.  

 

 Despite the therapeutic benefits of silicone lenses for PED and LSCD, further 

research is needed to improve the biocompatibility of this biomaterial. The high 

modulus (silicone hydrogels are stiffer and less flexible than conventional hydrogels) 
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of these lenses, causes mechanical interaction with ocular tissue which lead to 

papillary conjunctivis and disruption of the tear film structure [27]. Furthermore, the 

high oxygen permeability of silicone lenses induces epithelial inclusions related to 

mucin ball formation [49]. The development of silicone contact lens systems for the 

expansion and delivery of LESC will therefore require investigations into structural 

modifications (i.e. alterations to modulus and Dk) of this hydrogel which favourably 

complement corneal homeostasis and physiology. 

 

3.4. Alginate hydrogels  

Alginates are polysaccharides found in brown algae and bacteria, consisting of 

unbranched binary co-polymers of 1-4 linked β-D-mannuronic acid and α-L-guluronic 

acid, which when crosslinked by multi-valent cations (e.g. Ca
2+

, Ba
2+

, La
3+

, Fe
3+

, 

Zn
2+

, Mg
2+

, Sr
2+

) form into gels [49]. Alginate hydrogels are one of the most well-

characterised cell immobilisation substrates [50-51] due to effective immunoisolatory 

and mass transfer properties [49], and are widely used as biomaterial tools in the field 

of regenerative medicine [52-53].  

 

 The use of alginate hydrogels for ocular therapy is relatively novel. Only a 

small number of studies have been performed to examine the manner that alginate 

may be applied for ocular reconstruction. Alginate microspheres incorporated into 

collagen hydrogels were previously demonstrated as a viable composite construct for 

controlled drug delivery as well as human corneal epithelial cell growth [31]. Alginate 

membranes coated with chitosan used as base matrices for limbal epithelial cell 

cultivation maintained the attachment, spreading and growth of these cells [18]. 

Another composite hydrogel containing sodium alginate dialdehyde and 

hydroxypropyl chitosan was used for transplantation of corneal endothelial cells 

(CEC) onto Descemet's membrane, and demonstrated that encapsulated CEC 

remained viable and retained their normal morphology [54].    

 

Those preliminary studies have highlighted the potential of alginate gels as 

culture systems for LEC. As the structure of alginate gels can be modified to direct 

cell phenotype, particularly stem cell differentiation [55-56], and enhance cell 

survival, this biomaterial presents an ideal culture system for LESC, which may be 
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developed for application to reversing the pathology of LSCD. Moreover, the well-

reported use of alginate gels for cell preservation [57-58] will also allow this hydrogel 

to be developed into a transport/storage medical device (Figure 3.) applicable to 

corneal cell-based therapies.  

 

3.5. Chitosan hydrogels 

The mucoadhesive polysaccharide, chitosan is biocompatible, biodegradable and 

displays unique haemostatic activity and wound-healing properties that makes it 

attractive for use in biomedical applications [19]. Chitosan alone were previously 

applied topically to the eyes of rabbits after they had sustained central corneal wounds 

to repair the endothelium, because these polymers were indicated to induce 

regeneration of vascular endothelium [36]. 

 

 Synthetic chitosan membranes supported the viability and growth of corneal 

epithelial cells in a manner comparable to AM [19]. This study was supported by 

another report showing that chitosan membranes modified with poly-D,L-lactic acid 

(PDLLA) promoted wound healing of alkali-burned corneas in vivo and decreased 

scar tissue formation [37]. These findings are particularly exciting because one of the 

major advantages of AM is its anti-scarring abilities. Therefore, chitosan may be a 

substitute for AM. 

 

 The well-characterised abilities of chitosan for ophthalmic drug delivery may 

be exploited together with the ability of this polymer for the cultivation of corneal 

epithelial cells. Chitosan polymers can increase precorneal drug residence times to 

slow down drug elimination by the lacrymal flow, by increasing solution viscosity 

and by interacting with the negative charges of the mucus. [30]. Chitosan 

nanoparticles are also able to enhance the therapeutic index of clinically challenging 

drugs [32]. Chitosan hydrochloride increased transcorneal penetration of topically 

applied ofloxacin and the therapeutic efficacy of this ophthalmic drug [33]. 

Furthermore, a novel copolymer, poly(N-isopropylacrylamide)–chitosan, was 

previously suggested as a potential thermosensitive in situ gel-forming material for 

ocular drug delivery [34]. 
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Chitosan hydrogels may therefore be used to create a device which delivers 

both LEC and ocular drugs that enhance the effects of these cells, thus constituting a 

novel strategy to treat LSCD.   

 

 

3.6. Gelatin Hydrogels 

Gelatin is a mixture of peptides and proteins produced by acid and alkaline processing 

(partial hydrolysis) of collagen extracted from skin, bone and connective tissue [60]. 

Currently, gelatin hydrogels are under development as substrates for corneal 

endothelial and stromal cell culture, but they have not been used as supports for 

cultivating LEC. These gels have received the most attention for ocular use, as drug 

delivery vehicles.  

 

The success of gelatin gels for the culture of corneal endothelial and stromal 

cells indicate that LEC may be well-supported by these scaffolds. Gelatin gels were 

previously shown to provide stable mechanical support for corneal endothelial cell 

sheets [61], allowing expression of typical markers for these cells (zonula occludens-

1, Na(+)/K(+)-ATPase, and N-cadherin) [62]. Porous gelatin was demonstrated as 

suitable for the engineering of corneal stroma [63].  

 

Soluble ocular drug insert matrices comprised of raw gelatin [64-67] or 

chemically-modified [68-69] and composite gelatin [70-71] gels also indicate the 

feasibility of these biomaterials for LEC culture. Gelatin gels cross-linked with EDC 

were shown to support the culture of iris pigment epithelial cells more efficiently than 

gels cross-linked with glutaraldehyde [68]. A cationised gelatin film with 

incorporated epidermal growth factor (EGF) resulted in a reduction in an epithelial 

defect in rabbit corneas; this was accompanied by significantly enhanced epithelial 

proliferation compared with the reduction observed with topical application of EGF 

solution or the placement of an EGF-free gelatin film [64]. Polyvinyl alcohol (PVA)-

gelatin polymeric blends are also promising as ocular inserts for prolonged release of 

antibiotics in the eye [70]. 

 

The absorbable gelatin sponge, Gelfoam
®
, is a manufactured drug carrier for 

either local or systemic drug delivery via the ophthalmic route. This eye medical 
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device was reported to prolong the activity of the insulin through gradual release 

aided by the slow and constant tear production from the lachrymal system [72]. 

Another study showed that dilation of the pupil induced by phenylephrine and 

tropicamide delivered using Gelfoam
® 

was greater and longer lasting than that 

produced by eyedrops with an equivalent amount of these drugs [73]. As Gelfoam
® 

can be worn with contact lenses, in a hydrated form; this hydrogel as well as other 

gelatin hydrogels may serve as a growth factor/drug-release feeder device to maintain 

LEC delivered to the ocular surface using silicone lenses. 

 

 

3.7. Emerging Hydrogel Systems 

Hydrogels at the early experimental stage for possible application as substitutes for 

AM include hyaluronic acid (HA) [74] gels, thermosensitive gels (e.g. Mebiol
®
) [75-

76], poly(2-hydroxyethyl methacrylate (PHEMA) [77-79] and polyvinyl alcohol 

(PVA) [80-81] gels that are established for use in the artificial cornea and muscle-

derived myogel [82].  

 

HA gels chemically cross-linked with poly(N-2-hydroxyethyl) (2-

aminoethylcarbamate)-d,l-aspartamide (PHEA-EDA) were previously suggested as a 

suitable material for the release of limbal cells for corneal regeneration [74]. 

HA/PHEA-EDA films allowed moderate/poor adhesion of human corneal epithelial 

cells, rabbit limbal epithelial cells and fibroblasts. Contact lenses coated in their inner 

surface with the HA/PHEA-EDA film allowed greater cell adhesion, but this was 

transitory; viable cells were released after 3 days [74]. Therefore, HA/PHEA-EDA 

hydrogels, were suggested as suitable for delivering limbal cells in the treatment of 

corneal damage. 

 

The thermosensitive, synthetic polymer gel, Mebiol was previously reported as 

capable of supporting LEC and maintaining the stem phenotype of these cells. Mebiol 

supported limbal explant proliferation and cultured LEC expressed LSC markers, 

ABCG2 and p63, transient amplifying cell markers (connexin 43, integrin α9) and 

cornea differentiation marker (CK3) [75]. The transplantation of autologous limbal 

epithelial cells grown in Mebiol was shown to restore a nearly normal ocular 
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epithelial surface in eyes with unilateral LSCD in rabbit models [76], indicating that 

this hydrogel is almost at the pre-clinical stage. 

 

By contrast, PHEMA sponges used to construct the porous skirt material in the 

Chirila KPro require improvements in biocompatibility [77-79], to prevent 

calcification and pro-angiogenic effects before they are developed into a viable 

substrate for LEC. Another biomaterial component of the artificial cornea, the porous 

nano-hydroxyapatite/poly (vinyl alcohol) hydrogel [80], may also be suitable for LEC 

culture; this material was demonstrated to support the maintenance and growth of 

corneal epithelium in vitro [81]. 

 

The novel muscle-derived hydrogel, myogel [82] may provide an alternative 

cell (ex vivo expanded cells) carrier for LSCD with a further reduction in risk as it is 

has the potential to be derived from an autologous muscle biopsy in the clinical 

setting. 
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4. Future Perspectives  

We have already crossed the threshold for major change in LSCD therapy from 

conventional AM-based methodologies to more versatile and practical methods 

involving natural and synthetic biomaterial systems.  

 

 Fibrin and collagen hydrogels have developed beyond the pre-clinical stage, 

and they are currently proven as viable for the treatment of LSCD and as corneal 

prosthetics, respectively. Other hydrogels present unique properties including intrinsic 

anti-scarring capabilities (chitosan), efficient mass transfer abilities (alginate, gelatin, 

silicone) and properties appropriate for tissue engineering (alginate), which indicate 

them as excellent candidates for treatment of LSCD. 

 

 The structures of 'clean' hydrogel systems may be manipulated to alter their 

biomechanical and chemical properties, internal porosity, and surface topography to 

induce predictable changes in cell behaviour. Therefore, these biomaterials applied to 

the treatment of LSCD may potentially enable a more in-depth understanding of the 

mechanisms underlying the reversal of pathological symptoms of this disorder, which 

may introduce a novel field of ophthalmic medicine. 

 

 We conclude that given the considerable body of evidence demonstrating the 

efficacy of hydrogels in reconstruction of the damaged cornea, AM can certainly be 

replaced or complemented with these biomaterials for the treatment of LSCD.   
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Figure Legend 

 

Figure 1. The limbal stem cell niche.  

Corneal stem cells reside in the limbus at the corneoscleral junction between the 

conjunctiva and the cornea. Epithelial stem cells in the basal region of the limbus 

regenerate the corneal surface by differentiating into transient amplifying epithelial 

cells, which give rise to terminally differentiated epithelial cells that populate the 

suprabasal and superficial layers of the cornea. Damage to the limbal stem cell niche 

results in LSCD which disrupts regeneration of the corneal epithelium.  

 

Figure 2. The use of a compressed collagen hydrogel for ex vivo expansion of 

limbal epithelial cells.  

Collagen is plastically-compressed using a 120 gram load. CK3 (red) and CK14 

(green) are expressed in LECs expanded on a laminin-coated compressed collagen gel 

embedded with keratocytes. Cell nuclei are stained with PI or DAPI. Rhodamine-

labelled CK3 fluorescence and PI are detected at 615 nm after excitation at 595-605 

nm, FITC-labelled CK14 fluorescence is detected at 518 nm after excitation at 488 

nm and DAPI fluorescence is detected at 456-460 nm after excitation at 360 nm with 

a laser. Images represent 3 different experiments from 3 different corneoscleral rims. 

Scale bar: 50 μm. 

 

Figure 3. Alginate gels as LEC storage devices. 

Calcium alginate gel discs with dimensions approximately 19 mm in length and 1.5 

mm in depth are viable storage modules for LEC. Images (100X magnification) 

represent 3 individual experiments.     
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Figure 2 
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Table 1 

 

A summary of hydrogels at the clinical and preclinical stages of therapy for corneal regeneration. 

Hydrogel Description Ocular use Clinical success Reference 

 

Fibrin 

Fibrin hydrogels are composed of a cross-linked 

fibrin network either formed by combination of 

fibrinogen and thrombin, or isolated from 

autologous serum. 

Ex vivo expansion of LESC and 

encapsulation of MSC for treating 

LSCD. 

LSCD symptoms were 

reversed in human patients 

and animal models of LSCD.    

[11-15] 

Plastically-compressed collagen Collagen is an ECM protein. Conventional 

collagen gels are inherently weak due to high 

water content. Therefore, they are plastically 

compressed to achieve a stronger gel by 

expelling water. 

LEC culture for application to 

construction of an artificial cornea. 

N/A [16, 24-26] 

EDC and NHS cross-linked 

recombinant human collagen 

N/A Corneal epithelial cell culture. Tested on humans in a Phase 1 

clinical trial. 

[22] 

Recombinant human collagen-

phosphorylcholine (RHCIII-MPC) 

hydrogels 

Biosynthetic implants were fabricated from 

freeze-dried recombinant human collagen type 

III (RHCIII), either with or without the 

incorporation of 2-methacryloyloxyethyl 

phosphorylcholine (MPC). 

Corneal substitute. Promoted cell and nerve 

repopulation and enhanced 

resistance to 

neovascularisation in alkali 

burned rabbit eyes. 

[20] 

hydrated collagen and 

Nisopropylacrylamide copolymer-

based ECMs 

Gels were grafted with the laminin adhesion 

pentapeptide motif, YIGSR. 

Keratoprosthesis or artificial cornea. Successful in vivo 

regeneration of host corneal 

epithelium, stroma, and 

functional nerves in pig 

models. 

[21] 

Silicone Silicone hydrogels are polymers composed of 

carbon, hydrogen and oxygen.  

Soft contact lens, ocular bandage for 

treating persistent epithelial defects 

(PED) and substrate for LEC culture. 

Silicone contact lens can 

deliver LEC to the cornea and 

relieve PED symptoms in 

humans.  

[29-30] 
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Table 1 continued 

Hydrogel Description Ocular use Clinical success Reference 

Alginate Alginate is a polysaccharide. Alginate hydrogels 

comprise blocks of mannuronic and guluronic 

acid crosslinked via carboxyl groups with multi-

valent cations. 

LEC storage. N/A [58-59] 

Alginate microspheres 

incorporated into collagen 

hydrogels 

N/A Drug delivery and LEC culture. N/A [31] 

Chitosan Chitosan is a polysaccharide. Hydrogels are 

produced through crosslinking chitosan using 

glutaraldehyde, rutin or light. 

LEC culture and ocular drug delivery. Decreased ocular drug 

elimination time. 

[19, 30, 32] 

Chitosan membranes modified 

with poly-D,L-lactic acid 

(PDLLA) 

N/A Ocular bandage. Promoted wound healing in 

animal models of LSCD. 

[37] 

Chitosan hydrochloride (CH/HCl) N/A Ocular drug delivery. Increased transcorneal 

penetration of ocular drugs. 

[33] 

 (PDLLA/chitosan) membranes Poly-D,L-lactic acid (PDLLA) was modified 

with chitosan. 

Corneal wound healing. Promoted wound healing of 

alkali-burned corneas in vivo 

and decreased scar tissue 

formation in rabbit models. 

[34] 

Gelatin Partially-hydrolysed collagen. Corneal endothelial and stromal cell 

culture, and ocular drug delivery. 

Supports stromal regeneration 

in animal model. 

[61-66] 

Gelfoam® Gelatin sponge. Ocular drug delivery. Increases drug release time. [72-73] 

Poly(2-hydroxyethyl 

methacrylate) (PHEMA) 

hydrogels 

PHEMA gels are produced by mixing 2-

hydroxyethyl methacrylate (HEMA) in the 

presence of water (HEMA/ water ratio 20/80 

wt), 0.1% wt (of monomer) crosslinking agent, 

and 0.12% wt (of monomer) initiators 

(ammonium persulphate and 

tetramethylethylenediamine). 

Keratoprosthesis or artificial cornea. Supports corneal wound 

healing in animal models. 

[45] 

 

 


