215 research outputs found

    Stomatal clustering in Begonia associates with the kinetics of leaf gaseous exchange and influences water use efficiency

    Get PDF
    Stomata are microscopic pores formed by specialized cells in the leaf epidermis and permit gaseous exchange between the interior of the leaf and the atmosphere. Stomata in most plants are separated by at least one epidermal pavement cell and, individually, overlay a single substomatal cavity within the leaf. This spacing is thought to enhance stomatal function. Yet, there are several genera naturally exhibiting stomata in clusters and therefore deviating from the one-cell spacing rule with multiple stomata overlaying a single substomatal cavity. We made use of two Begonia species to investigate whether clustering of stomata alters guard cell dynamics and gas exchange under different light and dark treatments. Begonia plebeja, which forms stomatal clusters, exhibited enhanced kinetics of stomatal conductance and CO2 assimilation upon light stimuli that in turn were translated into greater water use efficiency. Our findings emphasize the importance of spacing in stomatal clusters for gaseous exchange and plant performance under environmentally limited conditions

    Clathrin Heavy Chain subunits coordinate endo- and exocytic traffic and affect stomatal movement

    Get PDF
    The current model for vesicular traffic to and from the plasma membrane is accepted but the molecular requirements for this coordination are not well defined. We have identified the has1 mutant, which has a stomatal function defect, as a clathrin heavy chain 1 (CHC1) mutant allele and show that it has a decreased rate of endocytosis and growth defects that are shared with other chc1 mutant alleles. We used chc1 alleles and the related chc2 mutant as tools to investigate the effects clathrin defects have on secretion pathways and plant growth. We show that secretion and endocytosis at the plasma membrane is sensitive to CHC1 and CHC2 function in seedling roots, and that chc mutants have physiological defects in stomatal function and plant growth that have not been previously described. These findings suggest that clathrin supports specific functions of multiple cell types. Stomata movement and gas exchange is altered in chc mutants, indicating clathrin is important for stomatal regulation. The aberrant function of chc mutant stomata is consistent with the growth phenotypes observed under different water and light conditions, which are also similar to those of the secretory SNARE mutant, syp121. The syp121 and chc mutants have impaired endo- and exocytosis compared to wild type, indicating a link between SYP121-dependent secretion and clathrin-dependent endocytosis at the plasma membrane. Our findings provide evidence that clathrin and SYP121 functions are important for the coordination of endo- and exocytosis, and have an impact on stomatal function, gas exchange, and vegetative growth in Arabidopsis

    Anion channel sensitivity to cytosolic organic acids implicates a central role for oxaloacetate in integrating ion flux with metabolism in stomatal guard cells

    Get PDF
    Stomatal guard cells play a key role in gas exchange for photosynthesis and in minimizing transpirational water loss from plants by opening and closing the stomatal pore. The bulk of the osmotic content driving stomatal movements depends on ionic fluxes across both the plasma membrane and tonoplast, the metabolism of organic acids, primarily Mal (Imitate), and its accumulation and loss. Anion channels at the plasma membrane are thought to comprise a major pathway for Mal efflux during stomatal closure, implicating their key role in linking solute flux with metabolism. Nonetheless, little is known of the regulation of anion channel current (I(Cl)) by cytosolic Mal or its immediate metabolite OAA (oxaloacetate). In the present study, we have examined the impact of Mal, OAA and of the monocarboxylic acid anion acetate in guard cells of Vicia faba L. and report that all three organic acids affect I(Cl), but with markedly different characteristics and sidedness to their activities. Most prominent was a suppression of I(Cl) by OAA within the physiological range of concentrations found in vivo. These findings indicate a capacity for OAA to co-ordinate organic acid metabolism with I(Cl), through the direct effect of organic acid pool size. The findings of the present study also add perspective to in vivo recordings using acetate-based electrolytes

    Exploring emergent properties in cellular homeostasis using OnGuard to model K+ and other ion transport in guard cells

    Get PDF
    It is widely recognized that the nature and characteristics of transport across eukaryotic membranes are so complex as to defy intuitive understanding. In these circumstances, quantitative mathematical modeling is an essential tool, both to integrate detailed knowledge of individual transporters and to extract the properties emergent from their interactions. As the first, fully integrated and quantitative modeling environment for the study of ion transport dynamics in a plant cell, OnGuard offers a unique tool for exploring homeostatic properties emerging from the interactions of ion transport, both at the plasma membrane and tonoplast in the guard cell. OnGuard has already yielded detail sufficient to guide phenotypic and mutational studies, and it represents a key step toward ‘reverse engineering’ of stomatal guard cell physiology, based on rational design and testing in simulation, to improve water use efficiency and carbon assimilation. Its construction from the HoTSig libraries enables translation of the software to other cell types, including growing root hairs and pollen. The problems inherent to transport are nonetheless challenging, and are compounded for those unfamiliar with conceptual ‘mindset’ of the modeler. Here we set out guidelines for the use of OnGuard and outline a standardized approach that will enable users to advance quickly to its application both in the classroom and laboratory. We also highlight the uncanny and emergent property of OnGuard models to reproduce the ‘communication’ evident between the plasma membrane and tonoplast of the guard cell

    Predicting the unexpected in stomatal gas exchange: not just an open-and-shut case

    No full text
    Plant membrane transport, like transport across all eukaryotic membranes, is highly non-linear and leads to interactions with characteristics so complex that they defy intuitive understanding. The physiological behaviour of stomatal guard cells is a case in point in which, for example, mutations expected to influence stomatal closing have profound effects on stomatal opening and manipulating transport across the vacuolar membrane affects the plasma membrane. Quantitative mathematical modelling is an essential tool in these circumstances, both to integrate the knowledge of each transport process and to understand the consequences of their manipulation in vivo. Here, we outline the OnGuard modelling environment and its use as a guide to predicting the emergent properties arising from the interactions between non-linear transport processes. We summarise some of the recent insights arising from OnGuard, demonstrate its utility in interpreting stomatal behaviour, and suggest ways in which the OnGuard environment may facilitate ‘reverse-engineering’ of stomata to improve water use efficiency and carbon assimilation

    A GPI signal peptide-anchored split-ubiquitin (GPS) system for detecting soluble bait protein interactions at the membrane

    Get PDF
    No abstract available

    Gating control and K+ uptake by the KAT1 K+ channel leaveraged through membrane anchoring of the trafficking protein SYP121

    Get PDF
    Vesicle traffic is tightly coordinated with ion transport for plant cell expansion through physical interactions between subsets of vesicle‐trafficking (so‐called SNARE) proteins and plasma membrane Kv channels, including the archetypal inward‐rectifying K+ channel, KAT1 of Arabidopsis. Ion channels open and close rapidly over milliseconds, whereas vesicle fusion events require many seconds. Binding has been mapped to conserved motifs of both the Kv channels and the SNAREs, but knowledge of the temporal kinetics of their interactions, especially as it might relate to channel gating and its coordination with vesicle fusion remains unclear. Here we report that the SNARE SYP121 promotes KAT1 gating through a persistent interaction that alters the stability of the channel, both in its open and closed states. We show, too, that SYP121 action on the channel open state requires SNARE anchoring in the plasma membrane. Our findings indicate that SNARE binding confers a conformational bias that encompasses the microscopic kinetics of channel gating, with leverage applied through the SNARE anchor in favor of the open channel

    A constraint-relaxation-recovery mechanism for stomatal dynamics

    Get PDF
    Models of guard cell dynamics, built on the OnGuard platform, have provided quantitative insights into stomatal function, demonstrating substantial predictive power. However, the kinetics of stomatal opening predicted by OnGuard models were threefold to fivefold slower than observed in vivo. No manipulations of parameters within physiological ranges yielded model kinetics substantially closer to these data, thus highlighting a missing component in model construction. One well‐documented process influencing stomata is the constraining effect of the surrounding epidermal cells on guard cell volume and stomatal aperture. Here, we introduce a mechanism to describe this effect in OnGuard2 constructed around solute release and a decline in turgor of the surrounding cells and its subsequent recovery during stomatal opening. The results show that this constraint–relaxation–recovery mechanism in OnGuard2 yields dynamics that are consistent with experimental observations in wild‐type Arabidopsis, and it predicts the altered opening kinetics of ost2 H+‐ATPase and slac1 Cl− channel mutants. Thus, incorporating solute flux of the surrounding cells implicitly through their constraint on guard cell expansion provides a satisfactory representation of stomatal kinetics, and it predicts a substantial and dynamic role for solute flux across the apoplastic space between the guard cells and surrounding cells in accelerating stomatal kinetics
    corecore