60 research outputs found

    Synthesis and solid-state characterisation of 4-substituted methylidene oxindoles

    Get PDF
    Background 4-substituted methylidene oxindoles are pharmacologically important. Detailed analysis and comparison of all the interactions present in crystal structures is necessary to understand how these structures arise. The XPac procedure allows comparison of complete crystal structures of related families of compounds to identify assemblies that are mainly the result of close-packing as well as networks of directed interactions. Results Five 4-substituted methylidene oxindoles have been synthesized by the Knoevenagel condensation of oxindole with para-substituted aromatic aldehydes and were characterized in the solid state by x-ray crystallography. Hence, the structures of (3E)-3-(4-Bromobenzylidene)-1,3-dihydro-2H-indol-2-one, 3a, (3E)-3-(4-Chlorobenzylidene)-1,3-dihydro-2H-indol-2-one, 3b, (3E)-3-(4-Methoxybenzylidene)-1,3-dihydro-2H-indol-2-one, 3c, (3E)-3-(4-Methylbenzylidene)-1,3-dihydro-2H-indol-2-one, 3d and (3E)-3-(4-Nitrobenzylidene)-1,3-dihydro-2H-indol-2-one, 3e, were elucidated using single crystal X-ray crystallography. Conclusions A hydrogen bonded dimer molecular assembly or supramolecular construct was identified in all the crystal structures examined along with a further four 1D supramolecular constructs which were common to at least two of the family of structures studied. The 1D supramolecular constructs indicate that once the obvious strong interaction is satisfied to form hydrogen bonded dimer it is the conventionally weaker interactions, such as steric bulk and edge-to-face interactions which compete to influence the final structure formation

    Synthesis of ‘unfeasible’ zeolites

    Get PDF
    R.E.M. thanks the Royal Society and the E.P.S.R.C. (Grants EP/L014475/1, EP/K025112/1 and EP/K005499/1) for funding work in this area. J.Č. and P.N. acknowledge the Czech Science Foundation for the project of the Centre of Excellence (P106/12/G015) and the European Union Seventh Framework Programme (FP7/ 2007-­‐2013) under grant agreement n°604307. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative–I3). We thank Professor Wuzong Zhou and Dr. Fengjiao Yu for their expertise in TEM and Daniel Dawson for help with NMR.Zeolites are porous aluminosilicate materials that have found applications in many different technologies. However, although simulations suggest that there are millions of possible zeolite topologies, only a little over 200 zeolite frameworks of all compositions are currently known, of which about 50 are pure silica materials. This is known as the zeolite conundrum - why have only so few of all the possible structures been made? Several criteria have been formulated to explain why most zeolites are unfeasible synthesis targets. Here we demonstrate the synthesis of two such 'unfeasible' zeolites, IPC-9 and IPC-10, through the assembly-disassembly-organization-reassembly mechanism. These new high-silica zeolites have rare characteristics, such as windows that comprise odd-membered rings. Their synthesis opens up the possibility of preparing other zeolites that have not been accessible by traditional solvothermal synthetic methods. We envisage that these findings may lead to a step change in the number and types of zeolites available for future applications.PostprintPeer reviewe

    Magnetic and Photoluminescent Sensors Based on Metal-Organic Frameworks Built up from 2-aminoisonicotinate

    Get PDF
    Red Guipuzcoana de Ciencia, Tecnologia e Innovacion OF218/2018 University of Basque Country GIU 17/13 Basque Government IT1005-16 IT1291-19 IT1310-19 Junta de Andalucia FQM-394 Spanish Ministry of Science, Innovation and Universities (MCIU/AEI/FEDER, UE) PGC2018-102052-A-C22 PGC2018-102052-B-C21 MAT2016-75883-C2-1-P European Union (EU) ESFIn this work, three isostructural metal-organic frameworks based on frst row transition metal ions and 2-aminoisonicotinate (2ain) ligands, namely, {[M(μ-2ain)2]·DMF}n [MII=Co (1), Ni (2), Zn (3)], are evaluated for their sensing capacity of various solvents and metal ions by monitoring the modulation of their magnetic and photoluminescence properties. The crystal structure consists of an open diamond-like topological 3D framework that leaves huge voids, which allows crystallizing two-fold interpenetrated architecture that still retains large porosity. Magnetic measurements performed on 1 reveal the occurrence of feld-induced spin-glass behaviour characterized by a frequency-independent relaxation. Solvent-exchange experiments lead successfully to the replacement of lattice molecules by DMSO and MeOH, which, on its part, show dominating SIM behaviour with low blocking temperatures but substantially high energy barriers for the reversal of the magnetization. Photoluminescence studied at variable temperature on compound 3 show its capacity to provide bright blue emission under UV excitation, which proceeds through a ligand-centred charge transfer mechanism as confrmed by timedependent DFT calculations. Turn-of and/or shift of the emission is observed for suspensions of 3 in diferent solvents and aqueous solutions containing metal ions

    Topological insights in polynuclear Ni/Na coordination clusters derived from a schiff base ligand

    Get PDF
    This article presents the syntheses, crystal structures, topological features and magnetic properties of two NiII/NaI coordination clusters (CCs) formulated [NiII3Na(L1)3(HL1 (MeOH)2] (1) and [NiII6Na(L1)5(CO3)(MeO (MeOH)3(H2O)3]·4(MeOH) 2(H2O) [2 4(MeOH) 2(H2O)] where H2L1 is the semi rigid Schiff base ligand (E)-2-(2-hydroxy-3 methoxybenzylideneamino)-phenol). Compound 1 possesses a rare NiII3NaI cubane (3M4-1) topology and compound 2 is the first example in polynuclear Ni/Na chemistry that exhibits a 2,3,4M7-1 topology

    Polycatenation weaves a 3D web

    No full text

    Visualization and quantification of geometric diversity in metal-organic frameworks

    No full text
    With ever-growing numbers of metal–organic framework (MOF) materials being reported, new computational approaches are required for a quantitative understanding of structure–property correlations in MOFs. Here, we show how structural coarse-graining and embedding (“unsupervised learning”) schemes can together give new insights into the geometric diversity of MOF structures. Based on a curated data set of 1262 reported experimental structures, we automatically generate coarse-grained and rescaled representations which we couple to a kernel-based similarity metric and to widely used embedding schemes. This approach allows us to visualize the breadth of geometric diversity within individual topologies and to quantify the distributions of local and global similarities across the structural space of MOFs. The methodology is implemented in an openly available Python package and is expected to be useful in future high-throughput studies

    Voronoi–dirichlet polyhedra in crystal chemistry: theory and applications

    No full text
    corecore