88 research outputs found

    StemNet: An Evolving Service for Knowledge Networking in the Life Sciences

    Get PDF
    Up until now, crucial life science information resources, whether bibliographic or factual databases, are isolated from each other. Moreover, semantic metadata intended to structure their contents is supplied in a manual form only. In the StemNet project we aim at developing a framework for semantic interoperability for these resources. This will facilitate the extraction of relevant information from textual sources and the generation of semantic metadata in a fully automatic manner. In this way, (from a computational perspective) unstructured life science documents are linked to structured biological fact databases, in particular to the identifiers of genes, proteins, etc. Thus, life scientists will be able to seamlessly access information from a homogeneous platform, despite the fact that the original information was unlinked and scattered over the whole variety of heterogeneous life science information resources and, therefore, almost inaccessible for integrated systematic search by academic, clinical, or industrial users

    CD28null pro-atherogenic CD4 T-cells explain the link between CMV infection and an increased risk of Cardiovascular death

    Get PDF
    An increased risk of cardiovascular death in Cytomegalovirus (CMV)-infected individuals remains unexplained, although it might partly result from the fact that CMV infection is closely associated with the accumulation of CD28null T-cells, in particular CD28null CD4 T-cells. These cells can directly damage endothelium and precipitate cardiovascular events. However, the current paradigm holds that the accumulation of CD28null T-cells is a normal consequence of aging, whereas the link between these T-cell populations and CMV infection is explained by the increased prevalence of this infection in older people. Resolving whether CMV infection or aging triggers CD28null T-cell expansions is of critical importance because, unlike aging, CMV infection can be treated. Methods: We used multi-color flow-cytometry, antigen-specific activation assays, and HLA-typing to dissect the contributions of CMV infection and aging to the accumulation of CD28null CD4 and CD8 T-cells in CMV+ and CMV− individuals aged 19 to 94 years. Linear/logistic regression was used to test the effect of sex, age, CMV infection, and HLA-type on CD28null T-cell frequencies. Results: The median frequencies of CD28null CD4 T-cells and CD28null CD8 T-cells were >12-fold (p=0.000) but only approximately 2-fold higher (p=0.000), respectively, in CMV+ (n=136) compared with CMV− individuals (n=106). The effect of CMV infection on these T-cell subsets was confirmed by linear regression. Unexpectedly, aging contributed only marginally to an increase in CD28null T-cell frequencies, and only in CMV+ individuals. Interestingly, the presence of HLA-DRB1*0301 led to an approximately 9-fold reduction of the risk of having CD28null CD4 T-cell expansions (OR=0.108, p=0.003). Over 75% of CMV-reactive CD4 T-cells were CD28null. Conclusion: CMV infection and HLA type are major risk factors for CD28null CD4 T-cell-associated cardiovascular pathology. Increased numbers of CD28null CD8 T-cells are also associated with CMV infection, but to a lesser extent. Aging, however, makes only a negligible contribution to the expansion of these T-cell subsets, and only in the presence of CMV infection. Our results open up new avenues for risk assessment, prevention, and treatment

    A preliminary randomized double blind placebo-controlled trial of intravenous immunoglobulin for Japanese encephalitis in Nepal

    Get PDF
    BACKGROUND: Japanese encephalitis (JE) virus (JEV) is a mosquito-borne flavivirus found across Asia that is closely related to West Nile virus. There is no known antiviral treatment for any flavivirus. Results from in vitro studies and animal models suggest intravenous immunoglobulin (IVIG) containing virus-specific neutralizing antibody may be effective in improving outcome in viral encephalitis. IVIG's anti-inflammatory properties may also be beneficial. METHODOLOGY/PRINCIPAL FINDINGS: We performed a pilot feasibility randomized double-blind placebo-controlled trial of IVIG containing anti-JEV neutralizing antibody (ImmunoRel, 400mg/kg/day for 5 days) in children with suspected JE at two sites in Nepal; we also examined the effect on serum neutralizing antibody titre and cytokine profiles. 22 children were recruited, 13 of whom had confirmed JE; 11 received IVIG and 11 placebo, with no protocol violations. One child (IVIG group) died during treatment and two (placebo) subsequently following hospital discharge. Overall, there was no difference in outcome between treatment groups at discharge or follow up. Passive transfer of anti-JEV antibody was seen in JEV negative children. JEV positive children treated with IVIG had JEV-specific neutralizing antibody titres approximately 16 times higher than those treated with placebo (p=0.2), which was more than could be explained by passive transfer alone. IL-4 and IL-6 were higher in the IVIG group. CONCLUSIONS/SIGNIFICANCE: A trial of IVIG for JE in Nepal is feasible. IVIG may augment the development of neutralizing antibodies in JEV positive patients. IVIG appears an appealing option for JE treatment that warrants further study. TRIAL REGISTRATION: ClinicalTrials.gov NCT01856205

    Patient-tailored adoptive immunotherapy with EBV-specific T cells from related and unrelated donors

    Get PDF
    BACKGROUND: Adoptive transfer of EBV-specific T cells can restore specific immunity in immunocompromised patients with EBV-associated complications. METHODS: We provide results of a personalized T-cell manufacturing program evaluating donor, patient, T-cell product and outcome data. Patient-tailored clinical-grade EBV-specific cytotoxic T-lymphocyte (EBV-CTL) products from stem cell donors (SCD), related third party donors (TPD) or unrelated TPD from the allogeneic T-cell donor registry (alloCELL) established at Hannover Medical School were manufactured by immunomagnetic selection using CliniMACS Plus or Prodigy device and EBV PepTivators EBNA-1 and Select. Consecutive manufacturing processes were evaluated and patient outcome and side effects were retrieved by retrospective chart analysis. RESULTS: Forty clinical-grade EBV-CTL products from SCDs, related or unrelated TPDs were generated for 37 patients with and without transplantation (Tx) history within 5 days (median) after donor identification. 34 patients received 1-14 EBV-CTL products (fresh and cryopreserved). EBV-CTL transfer led to complete response in 20 of 29 patients who were evaluated for clinical response. No infusion-related toxicity was reported. EBV-specific T cells in patients' blood were detectable in 16/18 monitored patients (89 %) after transfer and correlated with clinical response. CONCLUSION: In conclusion, personalized clinical-grade manufacturing of EBV-CTL products via immunomagnetic selection from SCD, related or unrelated TPD is feasible in a timely manner. Overall, EBV-CTL were clinically effective and well-tolerated. Our data suggest EBV-CTL as promising therapeutic approach for immunocompromised patients with refractory EBV-associated diseases beyond HSCT as well as patients with pre-existing organ dysfunction

    Characterization of a new HLA-A allele, A*010103+

    No full text
    corecore