34 research outputs found
On the Derivation of Optimal Partial Successive Interference Cancellation
The necessity of accurate channel estimation for Successive and Parallel
Interference Cancellation is well known. Iterative channel estimation and
channel decoding (for instance by means of the Expectation-Maximization
algorithm) is particularly important for these multiuser detection schemes in
the presence of time varying channels, where a high density of pilots is
necessary to track the channel. This paper designs a method to analytically
derive a weighting factor , necessary to improve the efficiency of
interference cancellation in the presence of poor channel estimates. Moreover,
this weighting factor effectively mitigates the presence of incorrect decisions
at the output of the channel decoder. The analysis provides insight into the
properties of such interference cancellation scheme and the proposed approach
significantly increases the effectiveness of Successive Interference
Cancellation under the presence of channel estimation errors, which leads to
gains of up to 3 dB.Comment: IEEE GLOBECOM 201
On the Application of the Baum-Welch Algorithm for Modeling the Land Mobile Satellite Channel
Accurate channel models are of high importance for the design of upcoming
mobile satellite systems. Nowadays most of the models for the LMSC are based on
Markov chains and rely on measurement data, rather than on pure theoretical
considerations. A key problem lies in the determination of the model parameters
out of the observed data. In this work we face the issue of state
identification of the underlying Markov model whose model parameters are a
priori unknown. This can be seen as a HMM problem. For finding the ML estimates
of such model parameters the BW algorithm is adapted to the context of channel
modeling. Numerical results on test data sequences reveal the capabilities of
the proposed algorithm. Results on real measurement data are finally presented.Comment: IEEE Globecom 201
Reliability-Latency Performance of Frameless ALOHA with and without Feedback
This paper presents a finite length analysis of multislot type frameless ALOHA based on a dynamic programming approach. The analysis is exact, but its evaluation is only feasible for moderate number of users due to the computational complexity. The analysis is then extended to derive continuous
approximations of its key parameters, which, apart from providing an insight into the decoding process, make it possible to estimate the packet error rate with very low computational complexity. Finally, a feedback scheme is presented in which the slot access scheme is dynamically adapted according to the approximate analysis in order to minimize the packet error rate. The results indicate that the introduction of feedback can substantially improve the performance of frameless ALOH
Association between loop diuretic dose changes and outcomes in chronic heart failure: observations from the ESC-EORP Heart Failure Long-Term Registry
[Abstract]
Aims. Guidelines recommend down-titration of loop diuretics (LD) once euvolaemia is achieved. In outpatients with heart
failure (HF), we investigated LD dose changes in daily cardiology practice, agreement with guideline recommendations,
predictors of successful LD down-titration and association between dose changes and outcomes.
Methods
and results.
We included 8130 HF patients from the ESC-EORP Heart Failure Long-Term Registry. Among patients who had dose
decreased, successful decrease was defined as the decrease not followed by death, HF hospitalization, New York Heart
Association class deterioration, or subsequent increase in LD dose. Mean age was 66±13 years, 71% men, 62% HF
with reduced ejection fraction, 19% HF with mid-range ejection fraction, 19% HF with preserved ejection fraction.
Median [interquartile range (IQR)] LD dose was 40 (25–80) mg. LD dose was increased in 16%, decreased in 8.3%
and unchanged in 76%. Median (IQR) follow-up was 372 (363–419) days. Diuretic dose increase (vs. no change) was
associated with HF death [hazard ratio (HR) 1.53, 95% confidence interval (CI) 1.12–2.08; P = 0.008] and nominally
with cardiovascular death (HR 1.25, 95% CI 0.96–1.63; P = 0.103). Decrease of diuretic dose (vs. no change) was
associated with nominally lower HF (HR 0.59, 95% CI 0.33–1.07; P = 0.083) and cardiovascular mortality (HR 0.62 95% CI 0.38–1.00; P = 0.052). Among patients who had LD dose decreased, systolic blood pressure [odds ratio
(OR) 1.11 per 10 mmHg increase, 95% CI 1.01–1.22; P = 0.032], and absence of (i) sleep apnoea (OR 0.24, 95% CI
0.09–0.69; P = 0.008), (ii) peripheral congestion (OR 0.48, 95% CI 0.29–0.80; P = 0.005), and (iii) moderate/severe
mitral regurgitation (OR 0.57, 95% CI 0.37–0.87; P = 0.008) were independently associated with successful decrease.
Conclusion. Diuretic dose was unchanged in 76% and decreased in 8.3% of outpatients with chronic HF. LD dose increase was
associated with worse outcomes, while the LD dose decrease group showed a trend for better outcomes compared
with the no-change group. Higher systolic blood pressure, and absence of (i) sleep apnoea, (ii) peripheral congestion,
and (iii) moderate/severe mitral regurgitation were independently associated with successful dose decrease
Sex- and age-related differences in the management and outcomes of chronic heart failure: an analysis of patients from the ESC HFA EORP Heart Failure Long-Term Registry
Aims: This study aimed to assess age- and sex-related differences in management and 1-year risk for all-cause mortality and hospitalization in chronic heart failure (HF) patients. Methods and results: Of 16 354 patients included in the European Society of Cardiology Heart Failure Long-Term Registry, 9428 chronic HF patients were analysed [median age: 66 years; 28.5% women; mean left ventricular ejection fraction (LVEF) 37%]. Rates of use of guideline-directed medical therapy (GDMT) were high (angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, beta-blockers and mineralocorticoid receptor antagonists: 85.7%, 88.7% and 58.8%, respectively). Crude GDMT utilization rates were lower in women than in men (all differences: P\ua0 64 0.001), and GDMT use became lower with ageing in both sexes, at baseline and at 1-year follow-up. Sex was not an independent predictor of GDMT prescription; however, age >75 years was a significant predictor of GDMT underutilization. Rates of all-cause mortality were lower in women than in men (7.1% vs. 8.7%; P\ua0=\ua00.015), as were rates of all-cause hospitalization (21.9% vs. 27.3%; P\ua075 years. Conclusions: There was a decline in GDMT use with advanced age in both sexes. Sex was not an independent predictor of GDMT or adverse outcomes. However, age >75 years independently predicted lower GDMT use and higher all-cause mortality in patients with LVEF 6445%
Decentralized Power Control for Slotted Spread Spectrum Aloha with Successive Interference Cancellation
In this paper, we study slotted Spread Spectrum Aloha with Successive Interference Cancelation at the receiver over a Gaussian channel. We consider a decentralized power control setting in which each user chooses its transmit power independently at random according to a power distribution with continuous support. In this setting, we derive an analytical expression for the expected interference power experienced by a user. This allows us to derive analytically the power distribution that, during the Successive Interference Cancelation process leads to a constant signal to noise plus interference ratio for all users.
We consider both perfect and imperfect interference cancellation
Finite-Length Analysis of Frameless ALOHA
In this paper we present an exact finite-length analysis
of frameless ALOHA that is obtained through a dynamical programming approach. Monte Carlo simulations are performed in order to verify the analysis. Two examples are provided that illustrate how the analysis can be used to optimize the parameters of frameless ALOHA. To the best of the knowledge of the authors, this is the first contribution dealing with an exact finite-length characterization of a protocol from the coded slotted ALOHA family of protocols
Finite-Length Analysis of Frameless ALOHA with Multi-User Detection
In this paper we present a finite-length analysis of frameless ALOHA for a k multi-user detection scenario, i.e., assuming the receiver can resolve collisions of size k or smaller. The analysis is obtained via a dynamical programming approach, and employed to optimize the scheme’s performance. We also assess the optimized performance as function of k. Finally, we verify the presented results through Monte Carlo simulations