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Abstract—We present a novel decoding algorithm for q-ary
low-density parity-check codes, termed symbol message passing.
The proposed algorithm can be seen as a generalization of
Gallager B and the binary message passing algorithm by Lechner
et al. to q-ary codes. We derive density evolution equations for
the q-ary symmetric channel, compute thresholds for a number
of regular low-density parity-check code ensembles, and verify
those by Monte Carlo simulations of long channel codes. The
proposed algorithm shows performance advantages with respect
to an algorithm of comparable complexity from the literature.

I. INTRODUCTION

There is a large body of literature considering mes-
sage passing algorithms for binary low-density parity-check
(LDPC) codes. In his seminal work [1], Gallager proposed
two different message passing algorithms for LDPC codes,
nowadays known as Gallager A and B, which exchange binary
messages between check nodes (CNs) and variable nodes
(VNs). In [2], algorithm E was proposed, where messages take
values in a ternary alphabet. A powerful algorithm, referred
to as binary message passing (BMP) was introduced in [3].
Although the exchanged messages are binary, the algorithm
is able to exploit soft information from the channel at the
VNs. An extension of BMP to ternary message alphabets was
studied in [4]. A finite alphabet message iterative decoder for
the binary symmetric channel (BSC) was presented in [5].

Various works in the literature study the extension of
binary LDPC codes to larger fields, including the original
work by Gallager [1]. Nonbinary LDPC codes constructed
over finite fields for binary-input Gaussian channels were
investigated in [6]. Different simplified message passing al-
gorithms were studied in [7], [8]. Regarding q-ary symmetric
channels (q-SCs), a majority-logic-like decoding algorithm
was introduced in [9], while verification based decoding
algorithms were studied in [10]–[13]. Both algorithms target
large field orders. In [14] a list message passing decoding
algorithm for q-ary LDPC codes over the q-SC was proposed,
which is practical when the list size is small. For list size 1,
the exchanged messages take values in a (q+1)-ary message
alphabet, composed of the elements of Fq and an additional
erasure message. In [15] a decoding algorithm for q-ary LDPC
codes was presented, for which the CN and VN operations are
implemented by means of look up tables. It makes use of the
information bottleneck method and is practical for small q.
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This paper targets q-ary LDPC codes for which we pro-
pose a low-complexity decoding algorithm, termed symbol
message passing (SMP). The proposed algorithm can be seen
as an extension of BMP to q-ary codes and q-ary message
alphabets. Similarly to BMP, it can exploit soft information
from the channel at the VNs. Over the q-SC, SMP becomes
a natural generalization of Gallager B [1]. We develop a
density evolution (DE) analysis for SMP over the q-SC. For
large q, the evaluation of DE becomes infeasible, due to the
increasing complexity. To tackle this, we derive tight upper
and lower bounds on the iterative decoding thresholds, which
can be efficiently evaluated even for very large q. Simulation
results are compared with the decoding thresholds obtained
via DE. Both the analysis and the simulations are provided
for the case of regular LDPC code ensembles for ease of
exposition. However, the extension to irregular ensembles is
straightforward. For the considered ensembles, the derived
thresholds are superior to the ones obtained in [14] with list
size 1.

The proposed algorithm is of interest, among others, for
applications with high decoding throughput and low decoding
complexity requirements, such as optical communications.
Another application area is code-based post-quantum cryptog-
raphy, for which binary regular LDPC codes are considered in
the literature [16]. Nonbinary codes can render cryptanalysis
more difficult, but there is the need for simple decoders.

II. PRELIMINARIES

In this work, we consider regular (dv, dc) LDPC codes
constructed over a finite field of order q, Fq . The code’s
bipartite graph comprises n VNs vj , j = {1, 2, . . . , n} of
degree dv and m CNs ci, i = {1, 2, . . . ,m} of degree dc.
The design rate is R = 1 − m/n = 1 − dv/dc. The edge
label associated to the edge connecting v and c is denoted
by hv,c, with hv,c ∈ Fq \ 0. The neighborhood of a VN, i.e.,
the set of all connected CNs, is denoted as N (v). Similarly,
the neighborhood of a CN is denoted as N (c). At the `th
decoding iteration, let the message sent from v to c be m(`)

v→c,
and the message from c to v be m

(`)
c→v. Furthermore, the

channel observation at v is denoted by mv. The ensemble
of q-ary regular (dv, dc) codes with block-length n is denoted
by C q

dv,dc
and is defined by a uniform distribution over all

possible edge permutations between VNs and CNs and over
all possible edge labelings from Fq \ 0.

Consider a q-SC with error probability ε, input alphabet
X and output alphabet Y , with X = Y = {0, α0, . . . , αq−2},
where α is a primitive element of Fq . Denote by X ∈ X and
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Y ∈ Y the random variables (RVs) associated to the channel
input and channel output, respectively, and by x and y their
realizations. Then, the transition probabilities of the q-SC are

PY |X(y|x) =

{
1− ε if y = x

ε/(q − 1) otherwise.
(1)

The capacity of the q-SC, in symbols per channel use, is

C = 1 + ε logq
ε

q − 1
+ (1− ε) logq(1− ε).

For a given channel output y, we introduce the normalized
log-likelihood vector, also referred to as L-vector,

L(y) = [L0(y), L1(y), . . . , Lαq−2(y)]

whose elements are obtained as

Lb(y) = log
(
PY |X(y|b)

)
− log (ε/(q − 1)) .

From (1), we have

Lb(y) =

{
D(ε) if b = y

0 otherwise
(2)

where
D(ε) = log(1− ε)− log (ε/(q − 1)) .

III. SYMBOL MESSAGE PASSING DECODING

In this section, we describe the proposed SMP algorithm in
detail, assuming transmission over the q-SC. SMP decoding
is an iterative algorithm, where CNs and VNs exchange q-ary
messages. The basic steps of SMP are as follows.

i. Initialization. At the first iteration, each VN v sends to
all c ∈ N (v)

m(1)
v→c = mv

where mv = y, y being the channel observation associ-
ated to VN v.

ii. CN-to-VN step. Each CN computes

m(`)
c→v = h−1v,c

∑
v′∈N (c)\v

hv′,cm
(`)
v′→c. (3)

iii. VN-to-CN step. Let E(`) be an aggregated extrinsic L-
vector, with

E(`) =
[
E

(`)
0 , E

(`)
1 , . . . , E

(`)
αq−2

]
(4)

= L (mv) +
∑

c′∈N (v)\c

L
(
m

(`−1)
c′→v

)
. (5)

Then, each VN computes

m(`)
v→c = argmax

b∈Fq

E
(`)
b .

Whenever multiple maximizing arguments exist, the
arg max function returns one of them at random with
uniform probability. The VN operation can be interpreted
as if the CNs and the channel would vote for the value of
the code symbol associated to the VN. The VN assigns
different weights to the CN and channel votes and selects
the element with the highest score.

TABLE I
SMP OPERATIONS PER ITERATION.

Operation CN VN

Addition, Fq 2dc − 1 -
Addition, real - 2dv
Multiplication, Fq 2dc -
Maximization, real - dv

In (5), the L-vector corresponding to the channel ob-
servation is obtained from (2) using the channel error
probability ε. Further, we model the CN-to-VN messages,
as an observation of the symbol X (associated to v), at
the output of an extrinsic q-SC channel [3], [17]. The
extrinsic channel error probability is denoted by ξ(`) and
is used to compute the corresponding L-vectors in (5).
In general, the error probabilities ξ(`) are not known.
Estimates can be obtained from DE analysis, as proposed
in [3], [4].

iv. Final decision. After iterating steps ii. and iii. for `max

iterations, the final decision at each VN is computed as

x̂ = argmax
b∈Fq

LAPP
b

with

LAPP =
[
LAPP
0 , LAPP

1 , . . . , LAPP
αq−2

]
= L (mv) +

∑
c∈N (v)

L
(
m(`max)

c→v

)
.

A. Complexity Analysis

The complexity of SMP is implementation dependent and
can be studied from many perspectives. Here, we focus on
the data flow in the decoder, as well as on the number of
arithmetic operations per iteration.

The internal decoder data flow, defined as the number of
bits that are passed in each iteration between VNs and CNs,
is given by 2 ·n ·B ·dv, where B is the number of bits used to
represent each message. SMP is characterized by a reduced
data flow between CNs and VNs compared to the classical
belief propagation (BP) decoders for nonbinary LDPC codes
[6], [7]. In SMP all decoder messages are symbols in Fq ,
rather than (q − 1)-ary probability vectors. It follows that
B = log2 q for SMP, while for conventional nonbinary BP
decoding B equals (q − 1) times the number of bits used to
represent each probability.

The algorithmic complexity of SMP is summarized in
Table I and is derived as follows. Consider the CN update in
(3). Each incoming and outgoing message is multiplied by an
element in Fq \0, yielding in total 2dc multiplications per CN.
One may precompute the sum of all dc incoming messages,
hv′,cm

(`)
v′→c, v′ ∈ N (c). Then, the extrinsic message in (3)

for an edge (c, v) is obtained by subtracting the incoming
message on that edge from the sum. This yields in total
dc−1+dc = 2dc−1 additions/subtractions, which are assumed
to have equivalent in cost.

At the VN side, one may compute the sum of all dv + 1
L-vectors in (5) with only dv additions. Note from (2) that



a q-ary L-vector contains only a single non-zero element.
To obtain any of the dv extrinsic messages E, the respective
incoming L-vector is subtracted from the sum. It follows that
at each VN the evaluation of (5) can be implemented with
dv + dv = 2dv additions/subtractions. Finally, for each of
the dv extrinsic messages a maximum has to be found. The
complexity of the proposed algorithm is very similar to the
one of the algorithm in [14], when the latter is operated with
list size 1.

IV. DENSITY EVOLUTION ANALYSIS

In this section we derive a DE analysis for regular un-
structured LDPC code ensembles. Due to the channel sym-
metry, without loss of generality, we assume that the all-zero
codeword is transmitted. We are interested in the probability
that the RV M

(`)
v→c associated to the VN-to-CN message takes

value a at the `th iteration, conditioned to the corresponding
codeword symbol being zero,

p(`)a = Pr
{
M (`)

v→c = a
∣∣X = 0

}
.

The initial probabilities p(0)a are

p
(0)
0 = 1− ε

and
p(0)a = ε/(q − 1), ∀a ∈ Fq \ 0.

The iterative decoding threshold of a code ensemble C q
dv,dc

is
defined as the maximum channel parameter ε?, so that for all
ε < ε?, p(`)0 tends to 1 as the block-length n and the number
of iterations ` tend to infinity [2].

Remark 1. As for the message passing algorithms proposed
in [3], [4], DE analysis plays a two-fold role. On one hand, it
allows deriving the iterative decoding threshold of the LDPC
code ensemble under analysis. On the other hand, the analysis
provides as a byproduct through (6) estimates of the extrinsic
channel reliabilities ξ(`) to be used in step iii. of the decoding
algorithm. The estimates turn to be accurate when decoding
is applied to long codes (this is in fact the regime in which DE
analysis captures well the evolution of the message probability
distributions).

Let s(`)a be the probability that a CN-to-VN message takes
value a at the `th iteration. We have

s(`)a =

dc−1∑
j=0

(
dc − 1

j

)(
1− p(`)0

)j (
p
(`)
0

)dc−1−j
ψj,a

where ψj,a is the probability that j erroneous messages sum
up to a. Under the all-zero codeword assumption, the extrinsic
channel at the VN input is a q-SC with error probability

ξ(`) = 1− s(`)0 . (6)

The probability that j independent RVs defined over Fq , with
zero probability assigned to the 0 symbol and with uniform
probability mass function over Fq \ 0, sum up to zero is [18,
Appendix A]

ψj,0 =
1

q

(
1 +

(−1)j

(q − 1)j−1

)
.

Due to symmetry, for any a 6= 0, we obtain

ψj,a =
1− ψj,0
q − 1

=
1

q

(
1− (−1)j

(q − 1)j

)
.

Let us consider next the VN-to-CN messages. Define the
random vector F (`),

F (`) =
(
F

(`)
0 , F

(`)
1 , . . . , F

(`)
αq−2

)
and its realization f (`),

f (`) =
(
f
(`)
0 , f

(`)
1 , . . . , f

(`)
αq−2

)
where F (`)

a denotes the RV associated to the number of CN-
to-VN messages that take value a at the `th iteration, and
f
(`)
a is its realization. The elements E(`)

b of the aggregated
extrinsic L-vector in (4) are related to f

(`)
b and the channel

observation y by

E
(`)
b =

{
D(ξ(`−1))f

(`−1)
b + D(ε) if b = y

D(ξ(`−1))f
(`−1)
b otherwise.

Further, F (`) conditioned to X = 0 is multinomially dis-
tributed, with

PF (`)|X

(
f (`)

∣∣0) =

(
dv − 1

f
(`)
0 , f

(`)
1 , . . . , f

(`)
αq−2

)
×
(
1− ξ(`)

)f(`)
0
(
ξ(`)/(q − 1)

)dv−1−f(`)
0

.

Let us denote by I(P) the indicator function (I(P) takes value
1 if the proposition P is true and 0 otherwise). Let E(`) be
the set of maximizers of E(`), i.e.,

E(`) =
{
b ∈ Fq

∣∣E(`)
b = max

a∈Fq

E(`)
a

}
.

We may write

p
(`)
0 =

∑
y∈Y

p(0)y
∑

f(`−1)

PF (`−1)|X

(
f (`−1)∣∣0) I

(
0 ∈ E(`)

)
|E(`)|

.

(7)
Due to symmetry, for any a 6= 0 we have

p(`)a =
1− p(`)0

q − 1
.

Note that, already for moderate values of q and dv, the
evaluation of (7) might be too complex. In the Appendix,
we provide tight upper and lower bounds on p(`)0 , which can
be evaluated efficiently.

V. NUMERICAL RESULTS

In Table II we give iterative decoding thresholds on the
q-SC for the ensemble C q

3,5 for various q. As a comparison,
iterative decoding thresholds from [14] are reported for the
simplest setup with list size c = 1. Despite the larger message
alphabet size for the algorithm in [14] with list size 1 (which
includes an additional erasure symbol), SMP yields better
thresholds.1 This is owing to the proper choice of the message

1We remark that increasing the list size in [14] yields an improvement in
thresholds at the price of a higher computational burden.



TABLE II
THRESHOLDS FOR C q

3,5 FOR DIFFERENT q.

q ε?, SMP ε? [14], list size 1 εBP εSh

2 0.061 0.061 0.113 0.146
4 0.123 0.092 0.196 0.248
8 0.134 0.093 0.254 0.319

16 0.138 0.094 0.296 0.371
32 0.140 – 0.328 0.409
64 0.141 – 0.352 0.437

128 0.142 – 0.371 0.459
256 0.142 – 0.385 0.476
512 0.142 – 0.398 0.489

TABLE III
THRESHOLDS FOR VARIOUS RATE-1/2 ENSEMBLES

AND DIFFERENT q.

q C q
3,6 C q

4,8 C q
5,10 C q

6,12 εSh

2 0.040 0.052 0.042 0.040 0.110
4 0.089 0.081 0.081 0.074 0.189
8 0.104 0.106 0.101 0.101 0.247

16 0.108 0.137 0.116 0.112 0.290
32 0.109 0.164 0.136 0.121 0.322
64 0.110 0.176 0.162 0.135 0.346

128 0.111 0.182 0.177 0.156 0.365
256 0.111 0.185 0.185 0.170 0.381
512 0.111 0.186 0.188 0.178 0.393

weights, as a result of DE analysis from (6). The table also
reports the Shannon limit εSh and the belief propagation (BP)
threshold εBP obtained through Monte Carlo simulations [6].
We remark that as q grows, the iterative decoding thresholds
ε?, the BP thresholds εBP and εSh increase.

Table III shows thresholds for C q
3,6, C q

4,8, C q
5,10, and C q

6,12

ensembles over the q-SC for different values of q. Note that
the bounding techniques in the Appendix allow computing
thresholds for large q, far beyond the values presented in the
table. The ultra-sparse ensemble C q

2,4 is not listed here, owing
to a zero decoding threshold on the q-SC. For the binary case,
the thresholds coincide with those achieved by the Gallager
B algorithm. In fact, it is easy to recognize that SMP with
q = 2 reduces, over the BSC, to the Gallager B algorithm.
Interestingly, there seems to be no single regular LDPC code
ensemble with rate-1/2 that outperforms all others in terms
of decoding threshold for all q.

Fig. 1 compares the iterative decoding threshold for the
C 4
3,6 and C 8

4,8 LDPC code ensembles with the symbol error
rate (SER) of a 4-ary (dv = 3, dc = 6) and 8-ary (dv =
4, dc = 8) LDPC code, respectively, with n = 60000. The
SER results were obtained by Monte Carlo simulations and
200 decoding iterations. As expected, the iterative decoding
threshold predicts accurately the waterfall performance of the
codes.

VI. CONCLUSIONS

We presented symbol message passing, a low-complexity
decoding algorithm for q-ary LDPC codes. A DE analysis
is presented for regular ensembles over the q-SC. It yields
iterative decoding thresholds and message weights which
result in performance advantages with respect to a competing
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10−4

10−3

10−2

10−1

100

ε

SE
R

iterative decoding threshold C 4
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iterative decoding threshold C 8

4,8
8-ary (4, 8) code, n = 60000

Fig. 1. SER vs. channel error probability ε for a 4-ary (3, 6) LDPC code
and a 8-ary (4, 8) LDPC code with n = 60000.

scheme of similar complexity. We also derived tight upper and
lower bounds on the VN message error probabilities, which
allow efficient and accurate computation of the thresholds.

APPENDIX

EFFICIENT EVALUATION OF DENSITY EVOLUTION

We derive tight upper and lower bounds on (7), which can
be efficiently evaluated. For the sake of simplicity, whenever
possible we drop the iteration count in the following. Let
µj(F ) denote the number of elements of F equal to j, i.e.,

µj(F ) =
∣∣{Fa, a ∈ Fq

∣∣Fa = j
}∣∣ .

Let us define tb as

tb = fb +
D(ε)

D(ξ)

where we consider channels with non-zero capacity, i.e.,
D(·) > 0. Let VN v receive a channel message y = 0, and f0
messages with value 0 from its neighbors. Whenever

max
i∈Fq\0

(Fi) < t0

the outgoing VN-to-CN message will be 0. Further, whenever

max
i∈Fq\0

(Fi) = t0

the outgoing VN-to-CN message will take value 0 with
probability 1/µt0(F ). Similar considerations can be made
when y 6= 0. Thus, for q > 2, we may recast (7). This yields
(8), where

κmax = min

(⌊dv − 1− f0
t0

⌋
, q − 1

)
κ′max = min

(⌊dv − 1− f1
f0

⌋
, q − 1

)
κ′′max = min

(⌊dv − 1

t1

⌋
, q − 1

)
.



p
(`)
0 = p

(0)
0

dv−1∑
f0=0

PF0|X(f0|0)

(
Pr

{
max
i∈Fq\0

(Fi) < t0
∣∣X = 0, F0 = f0

}

+ Pr

{
max
i∈Fq\0

(Fi) = t0
∣∣X = 0, F0 = f0

} κmax∑
κ=1

1

κ+ 1
Pr

{
µt0(F ) = κ

∣∣X = 0, F0 = f0, max
i∈Fq\0

(Fi) = t0

}
︸ ︷︷ ︸

(a)

)

+ (q − 1) p
(0)
1

dv−1∑
f1=0

PF1|X(f1|0)

[
dv−1−f1∑
f0>t1

PF0|X,F1
(f0|0, f1)

(
Pr

{
max

i∈Fq\{0,1}
(Fi) < f0

∣∣X = 0, F0 = f0, F1 = f1

}
+ Pr

{
max

i∈Fq\{0,1}
(Fi) = f0

∣∣∣∣X = 0, F0 = f0, F1 = f1

}

×
κ′max∑
κ=2

1

κ
Pr

{
µf0(F ) = κ

∣∣∣∣X = 0, F0 = f0, F1 = f1, max
i∈Fq\{0,1}

(Fi) = f0

}
︸ ︷︷ ︸

(b)

)

+ PF0|X,F1
(t1|0, f1)

(
1

2
Pr

{
max

i∈Fq\{0,1}
(Fi) < t1

∣∣∣∣X = 0, F0 = t1, F1 = f1

}
+ Pr

{
max

i∈Fq\{0,1}
(Fi) = t1

∣∣∣∣X = 0, F0 = t1, F1 = f1

}

×
κ′′max∑
κ=2

1

κ+ 1
Pr

{
µt1(F ) = κ

∣∣∣∣X = 0, F0 = t1, F1 = f1, max
i∈Fq\{0,1}

(Fi) = t1

}
︸ ︷︷ ︸

(c)

)]
(8)

An upper bound on p(`)0 is obtained as follows. Whenever
the aggregated L-vector E(`) has κ > 1 maxima, one of them
being at 0, we assume that E(`) has the minimum possible
number of maxima. We thus replace the terms (a), (b), (c)
in (8) by 1/2, 1/2, and 1/3, respectively. Similarly, a lower
bound can be obtained by replacing the terms (a), (b), (c) in
(8) by 1/(κmax+1), 1/κ′max, and 1/(κ′′max+1), respectively.
For the lower bound we thus overestimate the number of
maxima. Both upper and lower bounds can be efficiently
evaluated using a result in [19]. Both bounds are tight for
the ensembles in Tables II and III. In fact, they coincide in
the first 6 decimal digits.
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