170 research outputs found

    Hadroproduction of the Chi1 and Chi2 States of Charmonium in 800 GeV/c Proton-Silicon Interactions

    Full text link
    The cross sections for the hadroproduction of the Chi1 and Chi2 states of charmonium in proton-silicon collisions at sqrt{s}=38.8 GeV have been measured in Fermilab fixed target Experiment 771. The Chi states were observed via their radiative decay to J/psi+gamma, where the photon converted to e+e- in the material of the spectrometer. The measured values for the Chi1 and Chi2 cross sections for x_F>0 are 263+-69(stat)+-32(syst) and 498+-143(stat)+-67(syst) nb per nucleon respectively. The resulting sigma(Chi1}/sigma(Chi2) ratio of 0.53+-0.20(stat)+-0.07(syst), although somewhat larger than most theoretical expectations, can be accomodated by the latest theoretical estimates.Comment: 4 pages, 4 figure

    Atmospheric deposition and precipitation are important predictors of inorganic nitrogen export to streams from forest and grassland watersheds: a large-scale data synthesis

    Get PDF
    Previous studies have evaluated how changes in atmospheric nitrogen (N) inputs and climate affect stream N concentrations and fluxes, but none have synthesized data from sites around the globe. We identified variables controlling stream inorganic N concentrations and fluxes, and how they have changed, by synthesizing 20 time series ranging from 5 to 51 years of data collected from forest and grassland dominated watersheds across Europe, North America, and East Asia and across four climate types (tropical, temperate, Mediterranean, and boreal) using the International Long-Term Ecological Research Network. We hypothesized that sites with greater atmospheric N deposition have greater stream N export rates, but that climate has taken a stronger role as atmospheric deposition declines in many regions of the globe. We found declining trends in bulk ammonium and nitrate deposition, especially in the longest time-series, with ammonium contributing relatively more to atmospheric N deposition over time. Among sites, there were statistically significant positive relationships between (1) annual rates of precipitation and stream ammonium and nitrate fluxes and (2) annual rates of atmospheric N inputs and stream nitrate concentrations and fluxes. There were no significant relationships between air temperature and stream N export. Our long-term data shows that although N deposition is declining over time, atmospheric N inputs and precipitation remain important predictors for inorganic N exported from forested and grassland watersheds. Overall, we also demonstrate that long-term monitoring provides understanding of ecosystems and biogeochemical cycling that would not be possible with short-term studies alone.publishedVersio

    Zinc-Regulated DNA Binding of the Yeast Zap1 Zinc-Responsive Activator

    Get PDF
    The Zap1 transcription factor of Saccharomyces cerevisiae plays a central role in zinc homeostasis by controlling the expression of genes involved in zinc metabolism. Zap1 is active in zinc-limited cells and repressed in replete cells. At the transcriptional level, Zap1 controls its own expression via positive autoregulation. In addition, Zap1's two activation domains are regulated independently of each other by zinc binding directly to those regions and repressing activation function. In this report, we show that Zap1 DNA binding is also inhibited by zinc. DMS footprinting showed that Zap1 target gene promoter occupancy is regulated with or without transcriptional autoregulation. These results were confirmed using chromatin immunoprecipitation. Zinc regulation of DNA binding activity mapped to the DNA binding domain indicating other parts of Zap1 are unnecessary for this control. Overexpression of Zap1 overrode DNA binding regulation and resulted in constitutive promoter occupancy. Under these conditions of constitutive binding, both the zinc dose response of Zap1 activity and cellular zinc accumulation were altered suggesting the importance of DNA binding control to zinc homeostasis. Thus, our results indicated that zinc regulates Zap1 activity post-translationally via three independent mechanisms, all of which contribute to the overall zinc responsiveness of Zap1

    The association of N-palmitoylethanolamine with the FAAH inhibitor URB597 impairs melanoma growth through a supra-additive action

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidence of melanoma is considerably increasing worldwide. Frequent failing of classical treatments led to development of novel therapeutic strategies aiming at managing advanced forms of this skin cancer. Additionally, the implication of the endocannabinoid system in malignancy is actively investigated.</p> <p>Methods</p> <p>We investigated the cytotoxicity of endocannabinoids and their hydrolysis inhibitors on the murine B16 melanoma cell line using a MTT test. Enzyme and receptor expression was measured by RT-PCR and enzymatic degradation of endocannabinoids using radiolabeled substrates. Cell death was assessed by Annexin-V/Propidium iodine staining. Tumors were induced in C57BL/6 mice by s.c. flank injection of B16 melanoma cells. Mice were injected i.p. for six days with vehicle or treatment, and tumor size was measured each day and weighted at the end of the treatment. Haematoxylin-Eosin staining and TUNEL assay were performed to quantify necrosis and apoptosis in the tumor and endocannabinoid levels were quantified by HPLC-MS. Tube formation assay and CD31 immunostaining were used to evaluate the antiangiogenic effects of the treatments.</p> <p>Results</p> <p>The <it>N</it>-arachidonoylethanolamine (anandamide, AEA), 2-arachidonoylglycerol and <it>N</it>- palmitoylethanolamine (PEA) reduced viability of B16 cells. The association of PEA with the fatty acid amide hydrolase (FAAH) inhibitor URB597 considerably reduced cell viability consequently to an inhibition of PEA hydrolysis and an increase of PEA levels. The increase of cell death observed with this combination of molecules was confirmed in vivo where only co-treatment with both PEA and URB597 led to decreased melanoma progression. The antiproliferative action of the treatment was associated with an elevation of PEA levels and larger necrotic regions in the tumor.</p> <p>Conclusions</p> <p>This study suggests the interest of targeting the endocannabinoid system in the management of skin cancer and underlines the advantage of associating endocannabinoids with enzymatic hydrolysis inhibitors. This may contribute to the improvement of long-term palliation or cure of melanoma.</p

    A biophysical model of endocannabinoid-mediated short term depression in hippocampal inhibition

    Get PDF
    Memories are believed to be represented in the synaptic pathways of vastly interconnected networks of neurons. The plasticity of synapses, that is, their strengthening and weakening depending on neuronal activity, is believed to be the basis of learning and establishing memories. An increasing number of studies indicate that endocannabinoids have a widespread action on brain function through modulation of synap–tic transmission and plasticity. Recent experimental studies have characterised the role of endocannabinoids in mediating both short- and long-term synaptic plasticity in various brain regions including the hippocampus, a brain region strongly associated with cognitive functions, such as learning and memory. Here, we present a biophysically plausible model of cannabinoid retrograde signalling at the synaptic level and investigate how this signalling mediates depolarisation induced suppression of inhibition (DSI), a prominent form of shortterm synaptic depression in inhibitory transmission in hippocampus. The model successfully captures many of the key characteristics of DSI in the hippocampus, as observed experimentally, with a minimal yet sufficient mathematical description of the major signalling molecules and cascades involved. More specifically, this model serves as a framework to test hypotheses on the factors determining the variability of DSI and investigate under which conditions it can be evoked. The model reveals the frequency and duration bands in which the post-synaptic cell can be sufficiently stimulated to elicit DSI. Moreover, the model provides key insights on how the state of the inhibitory cell modulates DSI according to its firing rate and relative timing to the post-synaptic activation. Thus, it provides concrete suggestions to further investigate experimentally how DSI modulates and is modulated by neuronal activity in the brain. Importantly, this model serves as a stepping stone for future deciphering of the role of endocannabinoids in synaptic transmission as a feedback mechanism both at synaptic and network level

    Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury

    Get PDF
    Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis
    corecore