1,780 research outputs found

    Tunable exciton interactions in optical lattices with polar molecules

    Full text link
    Rotational excitation of polar molecules trapped in an optical lattice gives rise to rotational excitons. Here we show that non-linear interactions of such excitons can be controlled by an electric field. The exciton--exciton interactions can be tuned to induce exciton pairing, leading to the formation of biexcitons. Tunable non-linear interactions between excitons can be used for many applications ranging from the controlled preparation of entangled quasiparticles to the study of polaron interactions and the effects of non-linear interactions on quantum energy transport in molecular aggregates.Comment: Some typos have been corrected in this versio

    Comparison of baseline drinking practices, knowledge, and attitudes of adult s residing in communities taking part in the FAS prevention study in South Africa

    Get PDF
    Foetal Alcohol Syndrome (FAS) has been identified as among the most serious consequences associated with hazardous and harmful drinking in the Western Cape province, South Africa. Community surveys were conducted in two wine growing regions in this province to assess drinking behaviour, guide interventions and serve as a baseline for assessing the impact of population-level interventions. As part of a cross-sectional comparative study interviews were conducted with 384 and 209 randomly selected adults in the prevention (PC) and comparison communities (CC) respectively. Over 80% of respondents resided in urban areas, except inthe CC, where 61% of males resided on farms. Symptoms of hazardous or harmful drinking were reported by 16.0% of females and 32.5% of males in the PC, while 19.3% of females and 56.2% of males in the CC reported such drinking. Over two-thirds of respondents indicated that it was equally harmful for a woman to drink during any of the trimesters of pregnancy, but more than 30% of the women interviewed had never had a health worker speak to them about the effects of drinking during pregnancy. Over 10% had never heard of fetal alcohol syndrome. The findings reinforce the need for interventions to address hazardous/harmful use of alcohol inboth communities and also to address gaps in knowledge regarding the effects of drinking during pregnancy.Key Words: Alcohol, epidemiology, pregnancy, South Afric

    Atomic Force Microscopy of DNA, Nucleoproteins and Cellular Complexes: The Use of Functionalized Substrates

    Get PDF
    Progress towards rapid and simple characterization of biomolecular samples by scanning probe microscopy is impeded mainly by limitations of the current approach to sample preparation. We are working on approaches based on chemical functionalization of mica. Treatment of mica with aminopropyltriethoxy silane (APTES) makes the surface positively charged (AP-mica) and able to hold DNA in place for imaging, even in water. We have shown that AP-mica is an appropriate substrate for numerous nucleoprotein complexes as well. The AFM images of the complex of DNA with RecA protein are stable and indicate a structural periodicity for this filament. AP-mica holds strongly such large DNA complexes as kinetoplast DNA (kDNA) and is an appropriate substrate for their imaging with AFM. We have further develop this approach for making hydrophobic substrates. Silylation of mica surface with hexamethyldisilazane (Me-mica) allowed us to get AFM images of chlorosomes, an antenna complex isolated from green photosynthetic bacteria. Me-mica may be converted into a positively charged substrate after treatment with water solutions of tetraethylammonium bromide or cetyltrimethylammonium bromide. These activated surfaces show high activity towards binding the DNA molecules

    The thermodynamic dual structure of linear-dissipative driven systems

    Full text link
    The spontaneous emergence of dynamical order, such as persistent currents, is sometimes argued to require principles beyond the entropy maximization of the second law of thermodynamics. I show that, for linear dissipation in the Onsager regime, current formation can be driven by exactly the Jaynesian principle of entropy maximization, suitably formulated for extended systems and nonequilibrium boundary conditions. The Legendre dual structure of equilibrium thermodynamics is also preserved, though it requires the admission of current-valued state variables, and their correct incorporation in the entropy

    Distribution of entanglement in light-harvesting complexes and their quantum efficiency

    Full text link
    Recent evidence of electronic coherence during energy transfer in photosynthetic antenna complexes has reinvigorated the discussion of whether coherence and/or entanglement has any practical functionality for these molecular systems. Here we investigate quantitative relationships between the quantum yield of a light-harvesting complex and the distribution of entanglement among its components. Our study focusses on the entanglement yield or average entanglement surviving a time scale comparable to the average excitation trapping time. As a prototype system we consider the Fenna-Matthews-Olson (FMO) protein of green sulphur bacteria and show that there is an inverse relationship between the quantum efficiency and the average entanglement between distant donor sites. Our results suggest that longlasting electronic coherence among distant donors might help modulation of the lightharvesting function.Comment: Version accepted for publication in NJ

    Quantum transport in quantum networks and photosynthetic complexes at the steady state

    Get PDF
    Recently, several works have analysed the efficiency of photosynthetic complexes in a transient scenario and how that efficiency is affected by environmental noise. Here, following a quantum master equation approach, we study the energy and excitation transport in fully connected networks both in general and in the particular case of the Fenna-Matthew-Olson complex. The analysis is carried out for the steady state of the system where the excitation energy is constantly "flowing" through the system. Steady state transport scenarios are particularly relevant if the evolution of the quantum system is not conditioned on the arrival of individual excitations. By adding dephasing to the system, we analyse the possibility of noise-enhancement of the quantum transport.Comment: 10 pages, single column, 6 figures. Accepted for publication in Plos On

    Sensitivities of Low Energy Reactor Neutrino Experiments

    Full text link
    The low energy part of the reactor neutrino spectra has not been experimentally measured. Its uncertainties limit the sensitivities in certain reactor neutrino experiments. The origin of these uncertainties are discussed, and the effects on measurements of neutrino interactions with electrons and nuclei are studied. Comparisons are made with existing results. In particular, the discrepancies between previous measurements with Standard Model expectations can be explained by an under-estimation of the low energy reactor neutrino spectra. To optimize the experimental sensitivities, measurements for \nuebar-e cross-sections should focus on events with large (>>1.5 MeV) recoil energy while those for neutrino magnetic moment searches should be based on events <<100 keV. The merits and attainable accuracies for neutrino-electron scattering experiments using artificial neutrino sources are discussed.Comment: 25 pages, 9 figure

    Non-Markovian stochastic description of quantum transport in photosynthetic systems

    Full text link
    We analyze several aspects of the transport dynamics in the LH1-RC core of purple bacteria, which consists basically in a ring of antenna molecules that transport the energy into a target molecule, the reaction center, placed in the center of the ring. We show that the periodicity of the system plays an important role to explain the relevance of the initial state in the transport efficiency. This picture is modified, and the transport enhanced for any initial state, when considering that molecules have different energies, and when including their interaction with the environment. We study this last situation by using stochastic Schr{\"o}dinger equations, both for Markovian and non-Markovian type of interactions.Comment: 21 pages, 5 figure

    Role of quantum coherence in chromophoric energy transport

    Get PDF
    The role of quantum coherence and the environment in the dynamics of excitation energy transfer is not fully understood. In this work, we introduce the concept of dynamical contributions of various physical processes to the energy transfer efficiency. We develop two complementary approaches, based on a Green's function method and energy transfer susceptibilities, and quantify the importance of the Hamiltonian evolution, phonon-induced decoherence, and spatial relaxation pathways. We investigate the Fenna-Matthews-Olson protein complex, where we find a contribution of coherent dynamics of about 10% and of relaxation of 80%.Comment: 5 pages, 3 figures, included static disorder, correlated environmen

    Excitation energy transfer in light-harvesting system: Effect of initial state

    Full text link
    The light-harvesting is a problem of long interest. It becomes active again in recent years stimulated by suggestions of quantum effects in energy transport. Recent experiments found evidence that BChla 1 and BChla 6 are the first to be excited in the Fenna-Matthews-Olson(FMO) protein, theoretical studies, however, are mostly restricted to consider the exciton in BChla 1 initially. In this paper, we study the energy transport in the FMO complex by taking different initial states into account. Optimizations are performed for the decoherence rates as to maximal transport efficiency. Dependence of the energy transfer efficiency on the initial states is given and discussed. Effects of fluctuations in the site energies and couplings are also examined.Comment: 6 pages, 6 figures, J Phys B accepte
    corecore