Recently, several works have analysed the efficiency of photosynthetic
complexes in a transient scenario and how that efficiency is affected by
environmental noise. Here, following a quantum master equation approach, we
study the energy and excitation transport in fully connected networks both in
general and in the particular case of the Fenna-Matthew-Olson complex. The
analysis is carried out for the steady state of the system where the excitation
energy is constantly "flowing" through the system. Steady state transport
scenarios are particularly relevant if the evolution of the quantum system is
not conditioned on the arrival of individual excitations. By adding dephasing
to the system, we analyse the possibility of noise-enhancement of the quantum
transport.Comment: 10 pages, single column, 6 figures. Accepted for publication in Plos
On