1,803 research outputs found
Tunable exciton interactions in optical lattices with polar molecules
Rotational excitation of polar molecules trapped in an optical lattice gives
rise to rotational excitons. Here we show that non-linear interactions of such
excitons can be controlled by an electric field. The exciton--exciton
interactions can be tuned to induce exciton pairing, leading to the formation
of biexcitons. Tunable non-linear interactions between excitons can be used for
many applications ranging from the controlled preparation of entangled
quasiparticles to the study of polaron interactions and the effects of
non-linear interactions on quantum energy transport in molecular aggregates.Comment: Some typos have been corrected in this versio
Comparison of baseline drinking practices, knowledge, and attitudes of adult s residing in communities taking part in the FAS prevention study in South Africa
Foetal Alcohol Syndrome (FAS) has been identified as among the most serious consequences associated with hazardous and harmful drinking in the Western Cape province, South Africa. Community surveys were conducted in two wine growing regions in this province to assess drinking behaviour, guide interventions and serve as a baseline for assessing the impact of population-level interventions. As part of a cross-sectional comparative study interviews were conducted with 384 and 209 randomly selected adults in the prevention (PC) and comparison communities (CC) respectively. Over 80% of respondents resided in urban areas, except inthe CC, where 61% of males resided on farms. Symptoms of hazardous or harmful drinking were reported by 16.0% of females and 32.5% of males in the PC, while 19.3% of females and 56.2% of males in the CC reported such drinking. Over two-thirds of respondents indicated that it was equally harmful for a woman to drink during any of the trimesters of pregnancy, but more than 30% of the women interviewed had never had a health worker speak to them about the effects of drinking during pregnancy. Over 10% had never heard of fetal alcohol syndrome. The findings reinforce the need for interventions to address hazardous/harmful use of alcohol inboth communities and also to address gaps in knowledge regarding the effects of drinking during pregnancy.Key Words: Alcohol, epidemiology, pregnancy, South Afric
Atomic Force Microscopy of DNA, Nucleoproteins and Cellular Complexes: The Use of Functionalized Substrates
Progress towards rapid and simple characterization of biomolecular samples by scanning probe microscopy is impeded mainly by limitations of the current approach to sample preparation. We are working on approaches based on chemical functionalization of mica. Treatment of mica with aminopropyltriethoxy silane (APTES) makes the surface positively charged (AP-mica) and able to hold DNA in place for imaging, even in water. We have shown that AP-mica is an appropriate substrate for numerous nucleoprotein complexes as well. The AFM images of the complex of DNA with RecA protein are stable and indicate a structural periodicity for this filament. AP-mica holds strongly such large DNA complexes as kinetoplast DNA (kDNA) and is an appropriate substrate for their imaging with AFM. We have further develop this approach for making hydrophobic substrates. Silylation of mica surface with hexamethyldisilazane (Me-mica) allowed us to get AFM images of chlorosomes, an antenna complex isolated from green photosynthetic bacteria. Me-mica may be converted into a positively charged substrate after treatment with water solutions of tetraethylammonium bromide or cetyltrimethylammonium bromide. These activated surfaces show high activity towards binding the DNA molecules
The thermodynamic dual structure of linear-dissipative driven systems
The spontaneous emergence of dynamical order, such as persistent currents, is
sometimes argued to require principles beyond the entropy maximization of the
second law of thermodynamics. I show that, for linear dissipation in the
Onsager regime, current formation can be driven by exactly the Jaynesian
principle of entropy maximization, suitably formulated for extended systems and
nonequilibrium boundary conditions. The Legendre dual structure of equilibrium
thermodynamics is also preserved, though it requires the admission of
current-valued state variables, and their correct incorporation in the entropy
Distribution of entanglement in light-harvesting complexes and their quantum efficiency
Recent evidence of electronic coherence during energy transfer in
photosynthetic antenna complexes has reinvigorated the discussion of whether
coherence and/or entanglement has any practical functionality for these
molecular systems. Here we investigate quantitative relationships between the
quantum yield of a light-harvesting complex and the distribution of
entanglement among its components. Our study focusses on the entanglement yield
or average entanglement surviving a time scale comparable to the average
excitation trapping time. As a prototype system we consider the
Fenna-Matthews-Olson (FMO) protein of green sulphur bacteria and show that
there is an inverse relationship between the quantum efficiency and the average
entanglement between distant donor sites. Our results suggest that longlasting
electronic coherence among distant donors might help modulation of the
lightharvesting function.Comment: Version accepted for publication in NJ
Quantum transport in quantum networks and photosynthetic complexes at the steady state
Recently, several works have analysed the efficiency of photosynthetic
complexes in a transient scenario and how that efficiency is affected by
environmental noise. Here, following a quantum master equation approach, we
study the energy and excitation transport in fully connected networks both in
general and in the particular case of the Fenna-Matthew-Olson complex. The
analysis is carried out for the steady state of the system where the excitation
energy is constantly "flowing" through the system. Steady state transport
scenarios are particularly relevant if the evolution of the quantum system is
not conditioned on the arrival of individual excitations. By adding dephasing
to the system, we analyse the possibility of noise-enhancement of the quantum
transport.Comment: 10 pages, single column, 6 figures. Accepted for publication in Plos
On
Sensitivities of Low Energy Reactor Neutrino Experiments
The low energy part of the reactor neutrino spectra has not been
experimentally measured. Its uncertainties limit the sensitivities in certain
reactor neutrino experiments. The origin of these uncertainties are discussed,
and the effects on measurements of neutrino interactions with electrons and
nuclei are studied. Comparisons are made with existing results. In particular,
the discrepancies between previous measurements with Standard Model
expectations can be explained by an under-estimation of the low energy reactor
neutrino spectra. To optimize the experimental sensitivities, measurements for
\nuebar-e cross-sections should focus on events with large (1.5 MeV)
recoil energy while those for neutrino magnetic moment searches should be based
on events 100 keV. The merits and attainable accuracies for
neutrino-electron scattering experiments using artificial neutrino sources are
discussed.Comment: 25 pages, 9 figure
Non-Markovian stochastic description of quantum transport in photosynthetic systems
We analyze several aspects of the transport dynamics in the LH1-RC core of
purple bacteria, which consists basically in a ring of antenna molecules that
transport the energy into a target molecule, the reaction center, placed in the
center of the ring. We show that the periodicity of the system plays an
important role to explain the relevance of the initial state in the transport
efficiency. This picture is modified, and the transport enhanced for any
initial state, when considering that molecules have different energies, and
when including their interaction with the environment. We study this last
situation by using stochastic Schr{\"o}dinger equations, both for Markovian and
non-Markovian type of interactions.Comment: 21 pages, 5 figure
Role of quantum coherence in chromophoric energy transport
The role of quantum coherence and the environment in the dynamics of
excitation energy transfer is not fully understood. In this work, we introduce
the concept of dynamical contributions of various physical processes to the
energy transfer efficiency. We develop two complementary approaches, based on a
Green's function method and energy transfer susceptibilities, and quantify the
importance of the Hamiltonian evolution, phonon-induced decoherence, and
spatial relaxation pathways. We investigate the Fenna-Matthews-Olson protein
complex, where we find a contribution of coherent dynamics of about 10% and of
relaxation of 80%.Comment: 5 pages, 3 figures, included static disorder, correlated environmen
Excitation energy transfer in light-harvesting system: Effect of initial state
The light-harvesting is a problem of long interest. It becomes active again
in recent years stimulated by suggestions of quantum effects in energy
transport. Recent experiments found evidence that BChla 1 and BChla 6 are the
first to be excited in the Fenna-Matthews-Olson(FMO) protein, theoretical
studies, however, are mostly restricted to consider the exciton in BChla 1
initially. In this paper, we study the energy transport in the FMO complex by
taking different initial states into account. Optimizations are performed for
the decoherence rates as to maximal transport efficiency. Dependence of the
energy transfer efficiency on the initial states is given and discussed.
Effects of fluctuations in the site energies and couplings are also examined.Comment: 6 pages, 6 figures, J Phys B accepte
- …